Chin. Phys. Lett.  2019, Vol. 36 Issue (4): 043201    DOI: 10.1088/0256-307X/36/4/043201
ATOMIC AND MOLECULAR PHYSICS |
Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC
Khan Sadiq Nawaz1,2, Cheng-Dong Mi1,2, Liang-Chao Chen1,2, Peng-Jun Wang1,2, Jing Zhang1,2**
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006
Cite this article:   
Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen et al  2019 Chin. Phys. Lett. 36 043201
Download: PDF(672KB)   PDF(mobile)(666KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the electromagnetically induced-absorption-like (EIA-like) effect for an n-type system in an $^{87}$Rb Bose–Einstein condensate (BEC) using the absorption imaging technique for coupling and driving lasers operating at the $D_{1}$ and $D_{2}$ lines of $^{87}$Rb. The coherent effect is probed by measuring the number of atoms remaining after the BEC is exposed to strong driving fields and a weak probe field. The absorption imaging technique accurately reveals the EIA-like effect of the n-type system. This coherent effect in an n-type system is useful for optical storage, tunable optical switching, and so on.
Received: 23 December 2018      Published: 23 March 2019
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  32.10.Fn (Fine and hyperfine structure)  
  32.60.+i (Zeeman and Stark effects)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301602, the National Natural Science Foundation of China under Grant Nos 11474188 and 11704234, the Fund for Shanxi '1331 Project' Key Subjects Construction, and the Program of Youth Sanjin Scholar.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/4/043201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I4/043201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Khan Sadiq Nawaz
Cheng-Dong Mi
Liang-Chao Chen
Peng-Jun Wang
Jing Zhang
[1]Harris S E 1997 Phys. Today 50 36
[2]Cheng H, Zhang S S, Xin P P, Cheng Y and Liu H P 2016 Chin. Phys. B 25 114203
[3]Arimondo E 1996 Progress in Optics (Amsterdam: Elsevier Science) p 257
[4]Akulshin A M, Barreiro S and Lezama A 1999 Phys. Rev. Lett. 83 4277
[5]Budker D, Kimball D F, Rochester S M and Yashchuk V V 1999 Phys. Rev. Lett. 83 1767
[6]Liu C P, Gong S Q, Fan X J and Xu Z Z 2004 Opt. Commun. 231 289
[7]Xia H R, Ye C Y and Zhu S Y 1996 Phys. Rev. Lett. 77 1032
[8]Taichenachev A V, Tumaikin A M and Yudin V I 1999 Phys. Rev. A 61 011802
[9]Valente P, Failache H and Lezama A 2003 Phys. Rev. A 67 013806
[10]Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
[11]Scully M O, Zhu S Y and Gavrielides A 1989 Phys. Rev. Lett. 62 2813
[12]Babin S A, Podivilov E V, Shapiro D A, Hinze U, Tiemann E and Wellegehausen B 1999 Phys. Rev. A 59 1355
[13]Braje D A, Balic V, Goda S, Yin G Y and Harris S E 2004 Phys. Rev. Lett. 93 183601
[14]Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 64 1107
[15]Kocharovskaya O 1992 Phys. Rep. 219 175
[16]Chen L C, Yang G Y, Meng Z M, Huang L H and Wang P J 2017 J. Quantum Opt. 23 246 (in Chinese)
[17]Yang G Y, Chen L C, Mi C D, Wang P J and Zhang J 2018 J. Quantum Opt. 24 156 (in Chinese)
[18]Kong L B, Tu X H, Wang J, Zhu Y and Zhan M S 2007 Opt. Commun. 269 362
[19]Kang H, Wen L and Zhu Y 2003 Phys. Rev. A 68 063806
[20]Wan R G, Kou J, Jiang L, Kuang S Q, Jiang Y and Gao J Y 2011 Opt. Commun. 284 1569
[21]Peng B, Özdemir Ş K, Chen W, Nori F and Yang L 2014 Nat. Commun. 5 5082
[22]Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[23]Sheng J, Yang X, Wu H and Xiao M 2011 Phys. Rev. A 84 053820
[24]Mahmoudi M, Fleischhaker R, Sahrai M and Evers J 2008 J. Phys. B: At. Mol. Opt. Phys. 41 025504
[25]Hamedi H R, Radmehr A and Sahrai M 2014 Phys. Rev. A 90 053836
[26]Yang X, Ying K, Niu Y and Gong S 2015 J. Opt. 17 045505
[27]Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 2004 Atom-Photon Interactions, Basic Processes and Applications (Weinheim: Wiley)
[28]Chen L C, Wang P J, Meng Z M, Huang L H, Cai H, Wang D W, Zhu S Y and Zhang J 2018 Phys. Rev. Lett. 120 193601
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 043201
[2] Mo-Juan Yin, Tao Wang, Xiao-Tong Lu, Ting Li, Ye-Bing Wang, Xue-Feng Zhang, Wei-Dong Li, Augusto Smerzi, and Hong Chang. Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock[J]. Chin. Phys. Lett., 2021, 38(7): 043201
[3] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 043201
[4] Fu-Qiang Yu, Mu-Tian Cheng, Shao-Ming Li, Xiao-San Ma, Zhi-Feng Zhu, Xian-Shan Huang. Polarization Conversion of Single Photon via Scattering by a ${\Lambda}$ System in a Semi-Infinite Waveguide[J]. Chin. Phys. Lett., 2019, 36(5): 043201
[5] Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms[J]. Chin. Phys. Lett., 2018, 35(9): 043201
[6] Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 043201
[7] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 043201
[8] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 043201
[9] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 043201
[10] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 043201
[11] Teng-Fei Meng, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Excitation Dependence of Dipole–Dipole Broadening in Selective Reflection Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(11): 043201
[12] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 043201
[13] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 043201
[14] Bin Duan, Muhammad Abbas Bari, Ze-Qing Wu, Jun Yan, Jian-Guo Wang. Stark-Broadened Profiles of the Spectral Line $P_ \alpha$ in He II Ions[J]. Chin. Phys. Lett., 2016, 33(03): 043201
[15] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 043201
Viewed
Full text


Abstract