Chin. Phys. Lett.  2019, Vol. 36 Issue (3): 038701    DOI: 10.1088/0256-307X/36/3/038701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
An Improvement on the Combination of Magnetic Trap and Fluorescent Resonant Energy Transfer
Da-guan Nong1,2, Ming Li1,2**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Da-guan Nong, Ming Li 2019 Chin. Phys. Lett. 36 038701
Download: PDF(885KB)   PDF(mobile)(883KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The combination of magnetic trap (MT) and fluorescence resonant energy transfer (FRET) allows for nanoscale measurements of configurational changes of biomolecules under force. However, the magnetic bead involved in MT experiments introduces a substantial amount of background fluorescence which reduces the signal-to-noise ratio (SNR) of FRET significantly. Moreover, the short lifetime of the dye used in FRET limits the total sampling time when combined with MT. Here we use a moveable tube lens to adjust the wave front in the light pathway of MT so that both images of the magnetic bead and the fluorescent signals can be detected when long DNA handles are used to reduce the auto-fluorescence of the magnetic bead. We utilize the internal trigger of an electron multiplying charge-coupled device camera to control a shutter so that the dye can be excited intermittently when long time measurement of FRET is needed. As a demonstration of the hybrid technique, we observe the unfolding/refolding dynamics of a DNA hairpin and measure the DNA unwinding activity of the saccharomyces cerevisiae Pif1 (Pif1). Our results show that the unwinding burst of Pif1 under external force is different from that without the force. In addition, the improvement provides a better SNR and a longer sampling time in experiments in the MT-FRET assay.
Received: 15 October 2018      Published: 24 February 2019
PACS:  87.80.Nj (Single-molecule techniques)  
  87.80.Fe (Micromanipulation of biological structures)  
  82.37.Rs (Single molecule manipulation of proteins and other biological molecules)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11574382.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/3/038701       OR      https://cpl.iphy.ac.cn/Y2019/V36/I3/038701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Da-guan Nong
Ming Li
[1]Cecconi C, Shank E A, Bustamante C and Marqusee S 2005 Science 309 2057
[2]Marshall B T, Long M, Piper J W, Yago T, McEver R P and Zhu C 2003 Nature 423 190
[3]Li C and Li J 2015 Chin. Phys. Lett. 32 108702
[4]Cordova J C, Das D K, Manning H W and Lang M J 2014 Curr. Opin. Struct. Biol. 28 142
[5]Lipfert J, Hao X M and Dekker N H 2009 Biophys. J. 96 5040
[6]Graves E T, Duboc C, Fan J, Stransky F, Leroux C M and Strick T R 2015 Nat. Struct. Mol. Biol. 22 452
[7]Wang S, Zheng H Z, Zhao Z Y, Lu Y and Xu C H 2013 Acta Phys. Sin. 62 168703 (in Chinese)
[8]Zhao Z Y, Xu C H, Li J H, Huang X Y, Ma J B and Lu Y 2017 Acta Phys. Sin. 66 188701 (in Chinese)
[9]Capitanio M and Pavone F S 2013 Biophys. J. 105 1293
[10]Roy R, Hohng S and Ha T 2008 Nat. Methods 5 507
[11]Gosse C and Croquette V 2002 Biophys. J. 82 3314
[12]Tran P L T, Pohl T J, Chen C F, Chan A, Pott S and Zakian V A 2017 Nat. Commun. 8 15025
[13]Paeschke K, Bochman M L, Garcia P T, Cejka P, Friedman K L, Kowalczykowski S C and Zakian V A 2013 Nature 497 458
[14]Boulé J B and Zakian V A 2007 Nucl. Acids Res. 35 5809
[15]Li J H, Lin W X, Zhang B, Nong D G, Ju H P, Ma J B, Xu C H, Ye F F, Xi X G, Li M, Lu Y, Dou S X 2016 Nucl. Acids Res. 44 4330
Related articles from Frontiers Journals
[1] Weishuai Di, Xin Wang, Yanyan Zhou, Yuehai Mei, Wei Wang, and Yi Cao. Fluorination Increases Hydrophobicity at the Macroscopic Level but not at the Microscopic Level[J]. Chin. Phys. Lett., 2022, 39(3): 038701
[2] Yu-Ru Liu, Peng-Ye Wang, Wei Li, and Ping Xie. Acceleration of DNA Replication of Klenow Fragment by Small Resisting Force[J]. Chin. Phys. Lett., 2021, 38(11): 038701
[3] ZHU Chun-Li, LI Jing. Improvements for Manipulating DNA with Optical Tweezers[J]. Chin. Phys. Lett., 2015, 32(10): 038701
[4] ZHANG Hong-Yan, JI Chao, LIU Yu-Ru, LI Wei, LI Hui, DOU Shuo-Xing, WANG Wei-Chi, ZHANG Ling-Yun, XIE Ping, WANG Peng-Ye. Effects of pH on Oxaliplatin-Induced Condensation of Single DNA Molecules[J]. Chin. Phys. Lett., 2014, 31(2): 038701
[5] ZHENG Hai-Zi, NONG Da-Guan, LI Ming. Effect of Low-Pass Filtering in Force Calibration of Magnetic Tweezers[J]. Chin. Phys. Lett., 2013, 30(11): 038701
[6] ZHOU Xing-Fei, CUI Cheng-Yi, ZHANG Jin-Hai, LIU Jian-Hua, LIU Jing-Song. Comparative Study on Polarization of DNA and CdSe Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(3): 038701
Viewed
Full text


Abstract