CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effect of Magnetic Anisotropy on Magnetic Thermal Induction of Mn$_{0.3}$Zn$_{0.3}$Co$_{x}$Fe$_{2.4-x}$O$_{4}$ Nanoparticles |
Chen-Hui Lv1†, Li-Chen Wang1†, Zheng-Rui Li1, Xiang Yu1, Yan Mi1, Ruo-Shui Liu1, Kai Li2, Dan-Li Li2, Shu-Li He1** |
1Department of Physics, Capital Normal University, Beijing 100048 2Department of Chemistry, Capital Normal University, Beijing 100048
|
|
Cite this article: |
Chen-Hui Lv, Li-Chen Wang, Zheng-Rui Li et al 2019 Chin. Phys. Lett. 36 037501 |
|
|
Abstract Mn$_{0.3}$Zn$_{0.3}$Co$_{x}$Fe$_{2.4-x}$O$_{4}$ series magnetic nanoparticles are prepared by the high-temperature organic solvent method, and Mn$_{0.3}$Zn$_{0.3}$Co$_{x}$Fe$_{2.4-x}$O$_{4}$@SiO$_{2}$ composite nanoparticles are prepared by the reverse microemulsion method. The as-prepared samples are characterized, and the results show that the magnetic anisotropy constant of nanoparticles increases with the cobalt content, and the magnetic thermal induction shows a trend of increasing first and then decreasing. The optimal magnetic thermal induction is obtained at $x=0.12$ with a specific loss power of 2086 w/g$_{\rm metal}$, which is a bright prospect in clinical magnetic hyperthermia.
|
|
Received: 21 December 2018
Published: 24 February 2019
|
|
PACS: |
75.50.Gg
|
(Ferrimagnetics)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
76.60.Es
|
(Relaxation effects)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51571146, 51771124 and 51701130. |
|
|
[1] | Dutz S, Kettering M, Hilger I, Müller R and Zeisberger 2012 Biomed. Engin. 57 76 | [2] | Roti R and Joseph L 2008 Int. J. Hyperthermia 24 3 | [3] | Kall T and Dahlquist I 1983 Cancer Res. 43 1842 | [4] | Frey B, Weiss E M, Rubner Y et al 2012 Int. J. Hyperthermia 28 528 | [5] | Leng J, Lin C, Qu Y et al 2014 ACS Appl. Mater. Interfaces 6 16867 | [6] | Gilchrist R K, Medal R, Shorey W D et al 1957 Ann. Surg. 146 596 | [7] | Guardia P, Di Corato R, Lartigue L et al 2012 ACS Nano 6 3080 | [8] | Lee J H, Jang J T, Choi J S et al 2011 Nat. Nanotechnol. 6 418 | [9] | Sun S H, Zeng H et al 2004 J. Am. Chem. Soc. 126 273 | [10] | Ding H L, Zhang Y X, Wang S et al 2012 Chem. Mater. 24 4572 | [11] | He S L, Zhang H W, Liu Y H et al 2018 Small | [12] | Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370 | [13] | Noh S, Na W, Jang J et al 2012 Nano Lett. 12 3716 | [14] | Usov N A 2010 J. Appl. Phys. 107 123909 | [15] | Dejardin P M and Kalmykov Y P 2009 J. Appl. Phys. 106 123908 | [16] | Hergt R and Dutz S 2007 J. Magn. Magn. Mater. 311 187 | [17] | Vallejo-Fernandez G and O'Grady K 2013 Appl. Phys. Lett. 103 142417 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|