Chin. Phys. Lett.  2019, Vol. 36 Issue (3): 037501    DOI: 10.1088/0256-307X/36/3/037501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of Magnetic Anisotropy on Magnetic Thermal Induction of Mn$_{0.3}$Zn$_{0.3}$Co$_{x}$Fe$_{2.4-x}$O$_{4}$ Nanoparticles
Chen-Hui Lv1†, Li-Chen Wang1†, Zheng-Rui Li1, Xiang Yu1, Yan Mi1, Ruo-Shui Liu1, Kai Li2, Dan-Li Li2, Shu-Li He1**
1Department of Physics, Capital Normal University, Beijing 100048
2Department of Chemistry, Capital Normal University, Beijing 100048
Cite this article:   
Chen-Hui Lv, Li-Chen Wang, Zheng-Rui Li et al  2019 Chin. Phys. Lett. 36 037501
Download: PDF(2300KB)   PDF(mobile)(4007KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mn$_{0.3}$Zn$_{0.3}$Co$_{x}$Fe$_{2.4-x}$O$_{4}$ series magnetic nanoparticles are prepared by the high-temperature organic solvent method, and Mn$_{0.3}$Zn$_{0.3}$Co$_{x}$Fe$_{2.4-x}$O$_{4}$@SiO$_{2}$ composite nanoparticles are prepared by the reverse microemulsion method. The as-prepared samples are characterized, and the results show that the magnetic anisotropy constant of nanoparticles increases with the cobalt content, and the magnetic thermal induction shows a trend of increasing first and then decreasing. The optimal magnetic thermal induction is obtained at $x=0.12$ with a specific loss power of 2086 w/g$_{\rm metal}$, which is a bright prospect in clinical magnetic hyperthermia.
Received: 21 December 2018      Published: 24 February 2019
PACS:  75.50.Gg (Ferrimagnetics)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  76.60.Es (Relaxation effects)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51571146, 51771124 and 51701130.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/3/037501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I3/037501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chen-Hui Lv
Li-Chen Wang
Zheng-Rui Li
Xiang Yu
Yan Mi
Ruo-Shui Liu
Kai Li
Dan-Li Li
Shu-Li He
[1]Dutz S, Kettering M, Hilger I, Müller R and Zeisberger 2012 Biomed. Engin. 57 76
[2]Roti R and Joseph L 2008 Int. J. Hyperthermia 24 3
[3]Kall T and Dahlquist I 1983 Cancer Res. 43 1842
[4]Frey B, Weiss E M, Rubner Y et al 2012 Int. J. Hyperthermia 28 528
[5]Leng J, Lin C, Qu Y et al 2014 ACS Appl. Mater. Interfaces 6 16867
[6]Gilchrist R K, Medal R, Shorey W D et al 1957 Ann. Surg. 146 596
[7]Guardia P, Di Corato R, Lartigue L et al 2012 ACS Nano 6 3080
[8]Lee J H, Jang J T, Choi J S et al 2011 Nat. Nanotechnol. 6 418
[9]Sun S H, Zeng H et al 2004 J. Am. Chem. Soc. 126 273
[10]Ding H L, Zhang Y X, Wang S et al 2012 Chem. Mater. 24 4572
[11]He S L, Zhang H W, Liu Y H et al 2018 Small
[12]Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
[13]Noh S, Na W, Jang J et al 2012 Nano Lett. 12 3716
[14]Usov N A 2010 J. Appl. Phys. 107 123909
[15]Dejardin P M and Kalmykov Y P 2009 J. Appl. Phys. 106 123908
[16]Hergt R and Dutz S 2007 J. Magn. Magn. Mater. 311 187
[17]Vallejo-Fernandez G and O'Grady K 2013 Appl. Phys. Lett. 103 142417
Related articles from Frontiers Journals
[1] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 037501
[2] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 037501
[3] MALIK Muhammad-Imran, SUN Ying, DENG Si-Hao, SHI Ke-Wen, HU Peng-Wei, WANG Cong. Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide: Mn3InC[J]. Chin. Phys. Lett., 2015, 32(06): 037501
[4] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 037501
[5] YANG Ge, CHEN Bin. Villain Transformation for Ferrimagnetic Spin Chain[J]. Chin. Phys. Lett., 2014, 31(06): 037501
[6] WEI Ling, ZHANG Wei-Feng. A Win-Win Effect for Both the Ferromagnetism and the Dopability of p-Type Doping in ZnO:(Cu+N)[J]. Chin. Phys. Lett., 2013, 30(8): 037501
[7] Zahid Ali, Iftikhar Ahmad, Banaras Khan, Imad Khan. Robust Half-Metallicity and Magnetic Properties of Cubic Perovskite CaFeO3[J]. Chin. Phys. Lett., 2013, 30(4): 037501
[8] TANG Xiao-Li, SU Hua, and ZHANG Huai-Wu. Tailoring the Microstructure of NiZn Ferrite for Power Field Applications[J]. Chin. Phys. Lett., 2012, 29(8): 037501
[9] QI Xin, ZHOU Xin, SHU Di, ZHAO Jing-Jing, WANG Wei, CHEN Juan** . Effect of Porous Structure on the Magnetic Properties of NixMgyZn1−x-yFe2O4 Magnetic Materials[J]. Chin. Phys. Lett., 2011, 28(10): 037501
[10] ZHOU Xin, HOU Zhi-Ling, LI Feng, QI Xin** . Magnetic Properties of Ni-Zn Ferrite Prepared with the Layered Precursor Method[J]. Chin. Phys. Lett., 2010, 27(11): 037501
[11] XIANG Jun, SHEN Xiang-Qian, SONG Fu-Zhan, MENG Xian-Feng. Fabrication and Characterization of Mn0.5Zn0.5Fe2O4 Magnetic Nanofibers[J]. Chin. Phys. Lett., 2010, 27(1): 037501
[12] LI Chang-Hui, LIU Yi, WANG Fen, LUO Xuan, SUN Yu-Ping, ZHANG Xiang-Qun, CHENG Zhao-Hua, SUN Yang. Photoinduced Magnetization Change in Multiferroic YbFe2O4[J]. Chin. Phys. Lett., 2009, 26(12): 037501
[13] XUE Gang, PENG Long, ZHANG Huai-Wu. Crystal Structure and Magnetic Properties of Sm2Fe17Nδ Thin Films Deposited on Si (100) Substrates[J]. Chin. Phys. Lett., 2009, 26(9): 037501
[14] SU Hua, ZHANG Huai-Wu, TANG Xiao-Li, JING Yu-Lan, ZHONG Zhi-Yong. Influences of Bi2O3/V2O5 Additives on the Microstructure and Magnetic Properties of Lithium Ferrite[J]. Chin. Phys. Lett., 2009, 26(5): 037501
[15] SUN Hui-Yuan, HU Yun-Zhi, LIU Li-Hu. Influence of Temperature on Equilibrium Separation Between Vertical Bloch Lines in OHBs in Garnet Bubble Films[J]. Chin. Phys. Lett., 2009, 26(1): 037501
Viewed
Full text


Abstract