Chin. Phys. Lett.  2019, Vol. 36 Issue (3): 037301    DOI: 10.1088/0256-307X/36/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor
Jian-Ying Chen1, Lu Liu1, Chun-Xia Li2**, Jing-Ping Xu1**
1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074
2Shenzhen Institution of Information Technology, Shenzhen 518172
Cite this article:   
Jian-Ying Chen, Lu Liu, Chun-Xia Li et al  2019 Chin. Phys. Lett. 36 037301
Download: PDF(1196KB)   PDF(mobile)(1191KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A closed two-temperature-zone chemical vapor deposition (CVD) furnace was used to grow monolayer molybdenum disulfide (MoS$_{2}$) by optimizing the temperature and thus the evaporation volume of the Mo precursor. The experimental results show that the Mo precursor temperature has a large effect on the size and shape transformation of the monolayer MoS$_{2}$, and at a lower temperature of $ < $760$^{\circ}\!$C, the size of the triangular MoS$_{2}$ increases with the elevating temperature, while at a higher temperature of $>$760$^{\circ}\!$C, the shape starts to change from a triangle to a truncated triangle. A large-area triangular monolayer MoS$_{2}$ with a side length of 145 μm is achieved at 760$^{\circ}\!$C. Further, the as-grown monolayer MoS$_{2}$ is used to fabricate back-gated transistors by means of electron beam lithography to evaluate the electrical properties of MoS$_{2}$ thin films. The MoS$_{2}$ transistors with monolayer MoS$_{2}$ grown at 760$^{\circ}\!$C exhibit a high on/off current ratio of 10$^{6}$, a mobility of 1.92 cm$^{2}$/Vs and a subthreshold swing of 194.6 mV/dec, demonstrating the feasible approach of CVD deposition of monolayer MoS$_{2}$ and the fabrication of transistors on it.
Received: 04 December 2018      Published: 24 February 2019
PACS:  73.63.Bd (Nanocrystalline materials)  
  72.80.Vp (Electronic transport in graphene)  
  74.25.nd (Raman and optical spectroscopy)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61774064.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/3/037301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I3/037301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Ying Chen
Lu Liu
Chun-Xia Li
Jing-Ping Xu
[1]Radisavljevic B et al 2011 Nat. Nanotechnol. 6 147
[2]Wang X D et al 2015 Adv. Mater. 27 6575
[3]Lembke D et al 2015 Acc. Chem. Res. 48 100
[4]Das S et al 2013 Nano Lett. 13 100
[5]Li H et al 2014 Acc. Chem. Res. 47 1067
[6]Zhan Y J et al 2012 Small 8 966
[7]Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S et al 2012 Adv. Mater. 24 2320
[8]Wang S S, Rong Y M, Fan Y, Pacios M, Bhaskaran H, He K and Warner J H 2014 Chem. Mater. 26 6371
[9]Bergeron H, Sangwan V K, McMorrow J J, Campbell G P, Balla I, Liu X L, Bedzyk M J, Marks T J and Hersam M C 2017 Appl. Phys. Lett. 110 053101
[10]Heo S, Hayakawa R and Wakayama Y 2017 J. Appl. Phys. 121 024301
[11]Wu W, De D, Chang S C, Wang Y, Peng H, Bao J and Pei S S 2013 Appl. Phys. Lett. 102 142106
[12]Yang X N et al 2016 Sci. Chin. Mater. 59 182
[13]Cao Y J, Luo X F, Han S M, Yuan C L, Yang Y, Li Q L, Yu T and Ye S L 2015 Chem. Phys. Lett. 631 30
[14]Wang W Z, Zeng X B, Wu S X, Zeng Y, Hu Y S, Ding J and Xu S 2017 J. Phys. D 50 395501
[15]Xie Y, Wang Z, Zhan Y J, Zhang P, Wu R X, Jiang T, Wu S W, Wang H, Zhao Y, Nan T and Ma X H 2017 Nanotechnology 28 084001
[16]Zhou J D et al 2018 Nature 556 355
[17]Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
[18]Wang S S, Pacios M, Bhaskaran H and Warner J H 2016 Nanotechnology 27 085604
[19]Lee C G, Yan H G, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
[20]Yang S Y, Shim G W, Seo S B and Choi S Y 2017 Nano Res. 10 255
[21]Cheng J X, Jiang T, Ji Q Q, Zhang Y, Li Z M, Shan Y W, Zhang Y F, Gong X G, Liu W T and Wu S W 2015 Adv. Mater. 27 4069
[22]Zhu W J et al 2014 Nat. Commun. 5 3087
[23]Cho W C et al 2016 IEEE Trans. Nanotechnol. 15 2
[24]Sun L F, Leong W S, Yang S Z, Chisholm M F, Liang S J, Ang L K, Tang Y J, Mao Y W, Kong J and Yang H Y 2017 Adv. Funct. Mater. 27 1605896
[25]Han G H, Kybert N J, Naylor C H, Lee B S, Ping J L, Park J H, Kang J, Lee S Y, Lee Y H, Agarwal R and Johnson A T C 2015 Nat. Commun. 6 6128
[26]Ju M, Liang X Y, Liu J X, Zhou L, Liu Z, Mendes R G and Fu L 2017 Chem. Mater. 29 6095
Related articles from Frontiers Journals
[1] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 037301
[2] Li-Yan Zhou, Qi Zheng, Li-Hong Bao, Wen-Jie Liang. Bipolar Thermoelectrical Transport of SnSe Nanoplate in Low Temperature[J]. Chin. Phys. Lett., 2020, 37(1): 037301
[3] Wen-Lun Zhang. Improvement of Performance of HfS$_{2}$ Transistors Using a Self-Assembled Monolayer as Gate Dielectric[J]. Chin. Phys. Lett., 2019, 36(6): 037301
[4] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 037301
[5] Bahram Khoshnevisan, Mohammad Bagher Marami, Majid Farahmandjou. Fe$^{3+}$-Doped Anatase TiO$_{2}$ Study Prepared by New Sol-Gel Precursors[J]. Chin. Phys. Lett., 2018, 35(2): 037301
[6] Panagiota KORALLİ, Songül FİAT VAROL, Michael KOMPITSAS, Mihaela GIRTAN. Brightness of Blue/Violet Luminescent Nano-Crystalline AZO and IZO Thin Films with Effect of Layer Number: For High Optical Performance[J]. Chin. Phys. Lett., 2016, 33(05): 037301
[7] CHEN Yong-Chang, HUO Miao, LIU Yang, CHEN Tong, LENG Cheng-Cai, LI Qiang, SUN Zhao-Lin, SONG Li-Juan. Structural, Electrical, and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory[J]. Chin. Phys. Lett., 2015, 32(01): 037301
[8] LIU Zhao-Sen, YANG Cui-Hong, GU Bin, MA Rong, LI Qing-Fang. The Application of a New Simulation Approach to Ferrimagnetic Nanowires[J]. Chin. Phys. Lett., 2013, 30(9): 037301
[9] Majid. Farahmandjou. Synthesis of ITO Nanoparticles Prepared by the Degradation of Sulfide Method[J]. Chin. Phys. Lett., 2012, 29(7): 037301
[10] ZHU Li-Dan, SUN Fang-Yuan, ZHU Jie, TANG Da-Wei, LI Yu-Hua, GUO Chao-Hong. Nano-Metal Film Thermal Conductivity Measurement by using the Femtosecond Laser Pump and Probe Method[J]. Chin. Phys. Lett., 2012, 29(6): 037301
[11] LIU Zhao-Sen**, Sechovský, Vladimir, Divi&#, Martin . Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model[J]. Chin. Phys. Lett., 2011, 28(6): 037301
[12] HUANG Qing-Song, DONG Dong-Qing, XU Jian-Ping, ZHANG Xiao-Song, ZHANG Hong-Min, LI Lan. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization[J]. Chin. Phys. Lett., 2010, 27(5): 037301
[13] CHENG Jin, , ZOU Xiao-Ping, SONG Wei-Li, CAO Mao-Sheng, SU Yi, YANG Gang-Qiang, , Lü Xue-Ming, ZHANG Fu-Xue,. Shape-Controlled Synthesis and Related Growth Mechanism of Pb(OH)2 Nanorods by Solution-Phase Reaction[J]. Chin. Phys. Lett., 2010, 27(5): 037301
[14] SHAO Jia-Feng, A. G. U. Perera, P. V. V. Jayaweera, HE De-Yan. Low-Cost UV-IR Dual Band Detector Using Nonporous ZnO Film Sensitized by PbS Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(2): 037301
[15] DONG Dong-Qing, LI Lan, ZHANG Xiao-Song, HAN Xu, AN Hai-Ping. Effect of Precursor Molar Ratio of [S2-]/[Zn2+] on Particle Size and Photoluminescence of ZnS:Mn2+ Nanocrystals[J]. Chin. Phys. Lett., 2007, 24(9): 037301
Viewed
Full text


Abstract