Chin. Phys. Lett.  2019, Vol. 36 Issue (3): 030401    DOI: 10.1088/0256-307X/36/3/030401
GENERAL |
Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole
Y. Kenedy Meitei1**, T. Ibungochouba Singh1, I. Ablu Meitei2
1Department of Mathematics, Manipur University, Canchipur, Manipur 795003, India
2Department of Physics, Modern College, Imphal, Manipur 795005, India
Cite this article:   
Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei 2019 Chin. Phys. Lett. 36 030401
Download: PDF(449KB)   PDF(mobile)(442KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the adiabatic invariant action and applying the Bohr–Sommerfeld quantization rule and first law of black hole thermodynamics, a study of the quantization of the entropy and horizon area of a Kerr–Newman–de Sitter black hole is carried out. The same entropy spectrum is obtained in two different coordinate systems. It is also observed that the spacing of the entropy spectrum is independent of the black hole parameters. Also, the corresponding quantum of horizon area is in agreement with the results of Bekenstein.
Received: 21 December 2018      Published: 24 February 2019
PACS:  04.70.-s (Physics of black holes)  
  97.60.Lf (Black holes)  
  04.70.Bw (Classical black holes)  
Fund: Supported by the CSIR, Visiting Associate in Inter University Centre for Astronomy and Astrophysics, Pune, India
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/3/030401       OR      https://cpl.iphy.ac.cn/Y2019/V36/I3/030401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Y. Kenedy Meitei
T. Ibungochouba Singh
I. Ablu Meitei
[1]Bekenstein J D 1973 Phys. Rev. D 7 2333
[2]Bekenstein J D 1974 Lett. Nuovo Cimento 11 467
[3]Bekenstein J D 1997 arXiv:gr-qc/9710076
[4]Bekenstein J D 1998 arXiv:gr-qc/9808028
[5]Hod S 1998 Phys. Rev. Lett. 81 4293
[6]Dreyer O 2003 Phys. Rev. Lett. 90 081301
[7]Padmanabhan T and Patel A 2003 arXiv:gr-qc/0309053
[8]Kunstatter G 2003 Phys. Rev. Lett. 90 161301
[9]Maggiore M 2008 Phys. Rev. Lett. 100 141301
[10]Vagenas E C 2008 J. High Energy Phys. 0811 073
[11]Medved A J M 2008 Class. Quantum Grav. 25 205014
[12]Kwon Y and Nam S 2010 Class. Quantum Grav. 27 125007
[13]Setare M R and Vagenas E C 2004 arXiv:hep-th/040118702
[14]Ropotenko K 2009 Phys. Rev. D 80 044022
[15]Majhi B R and Vagenas E C 2011 Phys. Lett. B 701 623
[16]Jiang Q Q and Han Y 2012 Phys. Lett. B 718 584
[17]Zeng X X, Liu X M and Liu W B 2012 Eur. Phys. J. C 72 1967
[18]Qi D J 2013 Int. J. Theor. Phys. 52 345
[19]Zhou S, Chen G R and Huang Y C 2014 Adv. High Energy Phys. 2014 396453
[20]Liu C Z and Yu G X 2015 JETP Lett. 100 615
[21]Li Y and Qi D J 2017 Int. J. Theor. Phys. 56 2151
[22]Qi D J 2014 Astrophys. Space Sci. 349 33
[23]Li H L, Lin R and Cheng L Y 2013 Gen. Relativ. Gravit. 45 865
[24]Carter B 1970 Commun. Math. Phys. 17 233
[25]Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2738
[26]Srinivasan K and Padmanabhan T 1999 Phys. Rev. D 60 024007
[27]Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042
[28]Parikh M K 2002 Phys. Lett. B 546 189
[29]Jhang J Y and Zhao Z 2005 Phys. Lett. B 618 14
[30]Jhang J Y and Zhao Z 2005 Nucl. Phys. B 725 173
[31]Wu S Q and Jiang Q Q 2006 J. High Energy Phys. 0603 079
[32]Vagenas E C 2001 Phys. Lett. B 503 399
[33]Vagenas E C 2002 Phys. Lett. B 533 302
[34]Wei S W and Liu Y X 2009 arXiv:0906.0908
[35]Myung Y S 2010 Phys. Lett. B 689 42
[36]Zeng X X and Liu W B 2012 Eur. Phys. J. C 72 1987
[37]Li H L 2012 Chin. Phys. B 21 120401
[38]Ibungochouba T, Ablu I and Yugindro K 2013 Astrophys. Space Sci. 345 177
[39]Gour G and Medved A J M 2003 Class. Quantum Grav. 20 2261
Related articles from Frontiers Journals
[1] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 030401
[2] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 030401
[3] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 030401
[4] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 030401
[5] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 030401
[6] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 030401
[7] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 030401
[8] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 030401
[9] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 030401
[10] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 030401
[11] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 030401
[12] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 030401
[13] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 030401
[14] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 030401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 030401
Viewed
Full text


Abstract