Chin. Phys. Lett.  2019, Vol. 36 Issue (3): 030302    DOI: 10.1088/0256-307X/36/3/030302
GENERAL |
Dynamics of Quantum Fisher Information in Homodyne-Mediated Feedback Control
Li Chen1,2**, Dong Yan1,2, Li-Jun Song2,3, Shou Zhang4
1School of Science, Changchun University, Changchun 130022
2Key Laboratory of Materials Design and Quantum Simulation, Changchun University, Changchun 130022
3School of Information Engineering, Jilin Engineering Normal University, Changchun 130052
4Department of Physics, College of Science, Yanbian University, Yanji 133002
Cite this article:   
Li Chen, Dong Yan, Li-Jun Song et al  2019 Chin. Phys. Lett. 36 030302
Download: PDF(1104KB)   PDF(mobile)(1098KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the quantum Fisher information (QFI) dynamics of a dissipative two-level system in homodyne-mediated quantum feedback control. The analytical results demonstrate that the maximum values and stable values of the QFI can be greatly enhanced via feedback control. The quantum feedback plays a more evident role in the improvement of classical Fisher information. The classical part can reach a high stable value, while the quantum part eventually decays to zero whatever the feedback parameter is.
Received: 15 November 2018      Published: 24 February 2019
PACS:  03.67.-a (Quantum information)  
  06.20.-f (Metrology)  
  02.30.Yy (Control theory)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11874004, the Young Foundation of Science and Technology Department of Jilin Province under Grant No 20170520109JH, and the Science Foundation of the Education Department of Jilin Province under Grant No 2016286.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/3/030302       OR      https://cpl.iphy.ac.cn/Y2019/V36/I3/030302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li Chen
Dong Yan
Li-Jun Song
Shou Zhang
[1]Aasi J, Abadie J, Abbott B P et al 2013 Nat. Photon. 7 613
[2]Hinkley N, Sherman J A, Phillips N B et al 2013 Science 341 1215
[3]Geiger R, Ménoret V, Stern G et al 2011 Nat. Commun. 2 474
[4]Esnault F X, Blanshan E, Ivanov E N et al 2013 Phys. Rev. A 88 042120
[5]Ma J, Huang Y X, Wang X et al 2011 Phys. Rev. A 84 022302
[6]Zhang Y M, Li X W, Yang W et al 2013 Phys. Rev. A 88 043832
[7]Dorner U 2012 New J. Phys. 14 043011
[8]Tan Q S, Huang Y X, Yin X L et al 2013 Phys. Rev. A 87 032102
[9]Lu X M, Yu S and Oh C H 2015 Nat. Commun. 6 7282
[10]Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[11]Gong Q K, Li D, Yuan C H et al 2017 Chin. Phys. B 26 094205
[12]Wen J and Li G Q 2018 Chin. Phys. Lett. 35 060301
[13]Yang Y, Wang A M, Cao L Z et al 2018 Chin. Phys. Lett. 35 080301
[14]Gao D Y, Gao Q and Xia Y J 2018 Chin. Phys. B 27 060304
[15]Man Z X, Xia Y J and Franco R L 2015 Sci. Rep. 5 13843
[16]Man Z X, Xia Y J and An N B 2014 Phys. Rev. A 89 013852
[17]Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 642
[18]Wang J, Wiseman H M and Milburn G J 2005 Phys. Rev. A 71 042309
[19]Carvalho A R R and Hope J J 2007 Phys. Rev. A 76 010301
[20]Li J G, Zou J, Shao B et al 2008 Phys. Rev. A 77 012339
[21]Li Y, Luo B and Guo H 2011 Phys. Rev. A 84 012316
[22]Yu M, Fang M F and Zou H M 2018 Chin. Phys. B 27 010303
[23]Zheng Q, Ge L, Yao Y et al 2015 Phys. Rev. A 91 033805
[24]Zhang G and Zhu H 2016 Opt. Lett. 41 3932
[25]Ma S Q, Zhu H J and Zhang G F 2017 Phys. Lett. A 381 1386
[26]Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland)
[27]Liu J, Jing X and Wang X 2013 Phys. Rev. A 88 042316
[28]Yamamoto N 2005 Phys. Rev. A 72 024104
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 030302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 030302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 030302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 030302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 030302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 030302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 030302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 030302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 030302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 030302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 030302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 030302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 030302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 030302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 030302
Viewed
Full text


Abstract