Chin. Phys. Lett.  2019, Vol. 36 Issue (12): 127301    DOI: 10.1088/0256-307X/36/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Unconventional Influence of a Nearby Molecule onto Transport of Single C$_{60}$ Molecule Transistor
Xiao Guo1,2, Wen-jie Liang1,2,3**
1Beijing National Center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
3Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Xiao Guo, Wen-jie Liang 2019 Chin. Phys. Lett. 36 127301
Download: PDF(587KB)   PDF(mobile)(595KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the transport property of single C$_{60}$ molecular transistors with special focus on the situation that other molecules are in vicinity. The devices are prepared using electromigration and thermal deposition techniques. Pure single C$_{60}$ molecule transistors show typical coulomb blockade behavior at low temperature. When we increase the coverage of molecules slightly by extending the deposition time, the transport spectrum of devices displays a switching behavior in the general coulomb blockade pattern. We attribute this unconventional phenomenon to the influence from a nearby C$_{60}$ molecule. By analyzing this transport behavior quantitatively based on the parallel-double-quantum-dot model, the interaction from the nearby molecule is proved to be of capacity and tunneling coupling. Thermal stimulation is also applied to the device to investigate the effect of local charging environment variation on intermolecular interaction.
Received: 18 October 2019      Published: 05 November 2019
PACS:  73.63.Kv (Quantum dots)  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
  85.65.+h (Molecular electronic devices)  
Fund: Supported by the National Key R&D Program of China (2016YFA0200800), the Strategic Priority Research Program of Chinese Academy of Sciences under Grant Nos XDB30000000 and XDB07030100, the Sinopec Innovation Scheme (A-381), and the Rise-Sinopec Fund (No 10010104-18-ZC0609-0003).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/12/127301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I12/127301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao Guo
Wen-jie Liang
[1]Aradhya S V and Venkataraman L 2013 Nat. Nanotechnol. 8 399
[2]Song H, Reed M A and Lee T 2011 Adv. Mater. 23 1583
[3]Tao N J 2006 Nat. Nanotechnol. 1 173
[4]D Xiang et al 2016 Chem. Rev. 116 4318
[5]Perrin M L, Burzuri E and H S van der Zant 2015 Chem. Soc. Rev. 44 902
[6]Scott G D and Natelson D 2010 ACS Nano 4 3560
[7]E A Osorio et al 2008 J. Physics. Condens. Matter: An Inst. Phys. J. 20 374121
[8]W J Liang et al 2002 Nature 417 725
[9]S Kubatkin et al 2003 Nature 425 698
[10]C W Marquardt et al 2010 Nat. Nanotechnol. 5 863
[11]Y Kim et al 2014 Nat. Nanotechnol. 9 881
[12]S Thiele et al 2014 Science 344 1135
[13]J Martínez-Blanco et al 2015 Nat. Phys. 11 640
[14]S Wu et al 2008 Nat. Nanotechnol. 3 569
[15]H Park et al 2000 Nature 407 57
[16]Yu L H and Natelson D 2004 Nano Lett. 4 79
[17]C B Winkelmann et al 2009 Nat. Phys. 5 876
[18]H Park et al 1999 Appl. Phys. Lett. 75 301
[19]F Prins et al 2011 Nano Lett. 11 4607
[20]L H Yu et al 2004 Phys. Rev. Lett. 93 266802
[21]Galperin M, Ratner M A and Nitzan A 2007 J. Phys.: Condens. Matter 19 103201
[22]E A Osorio et al 2007 Adv. Mater. 19 281
[23]N P de Leon et al 2008 Nano Lett. 8 2963
[24]Petit P et al 2014 Phys. Rev. B 89 115432
[25]F Hofmann et al 1995 Phys. Rev. B 51 13872
[26]Abulizi G, Baumgartner A and Schönenberger C 2016 Phys. Status Solidi B 253 2428
[27]Beenakker C W J 1991 Phys. Rev. B 44 1646
[28]Mahapatra S, Buch H and Simmons M Y 2011 Nano Lett. 11 4376
Related articles from Frontiers Journals
[1] Jiyuan Bai, Kongfa Chen, Pengyu Ren, Jianghua Li, Zelong He, and Li Li. Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads[J]. Chin. Phys. Lett., 2020, 37(12): 127301
[2] Zhanbin Bai, Xiangkai Liu, Zhen Lian, Kangkang Zhang, Guanghou Wang, Su-Fei Shi, Xiaodong Pi, Fengqi Song. A Silicon Cluster Based Single Electron Transistor with Potential Room-Temperature Switching[J]. Chin. Phys. Lett., 2018, 35(3): 127301
[3] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 127301
[4] SU Li-Na, LV Li, LI Xin-Xing, QIN Hua, GU Xiao-Feng. Fabrication and Characterization of a Single Electron Transistor Based on a Silicon-on-Insulator[J]. Chin. Phys. Lett., 2015, 32(4): 127301
[5] LI Zeng-Peng, WU Shao-Quan, ZHAO Guo-Ping. Effects of the Antiferromagnetic Spin Coupling and Interdot Coulomb Repulsion on Kondo Effects in Serial Double Quantum Dots[J]. Chin. Phys. Lett., 2014, 31(04): 127301
[6] WANG Hao, WU Guo-Xing. The Performance Characteristics of a Nano-thermoelectric Refrigerator Driven by an External Stochastic Force[J]. Chin. Phys. Lett., 2013, 30(5): 127301
[7] PENG Juan**,LI Shu-Shen. The Electronic Structure of Coupled Semiconductor Quantum Dots Arranged as a Graphene Hexagonal Lattice under a Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(4): 127301
[8] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 127301
[9] WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi . Photocatalysis of InGaN Nanodots Responsive to Visible Light[J]. Chin. Phys. Lett., 2011, 28(5): 127301
[10] ZHANG Xian-Gao, CHEN Kun-Ji, FANG Zhong-Hui, QIAN Xin-Ye, LIU Guang-Yuan, JIANG Xiao-Fan, MA Zhong-Yuan, XU Jun, HUANG Xin-Fan, JI Jian-Xin, HE Fei, SONG Kuang-Bao, ZHANG Jun, WAN Hui, WANG Rong-Hua. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment[J]. Chin. Phys. Lett., 2010, 27(8): 127301
[11] HUANG Qing-Song, DONG Dong-Qing, XU Jian-Ping, ZHANG Xiao-Song, ZHANG Hong-Min, LI Lan. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization[J]. Chin. Phys. Lett., 2010, 27(5): 127301
[12] CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 127301
[13] TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo. A Photovoltaic InAs Quantum-Dot Infrared Photodetector[J]. Chin. Phys. Lett., 2010, 27(4): 127301
[14] ZHOU Xing-Fei, CUI Cheng-Yi, ZHANG Jin-Hai, LIU Jian-Hua, LIU Jing-Song. Comparative Study on Polarization of DNA and CdSe Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(3): 127301
[15] XU Zhang-Cheng, ZHANG Ya-Ting, Jø, rn M. Hvam, Yoshiji Horikoshi. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers[J]. Chin. Phys. Lett., 2009, 26(5): 127301
Viewed
Full text


Abstract