GENERAL |
|
|
|
|
Stress, Roughness and Reflectivity Properties of Sputter-Deposited B$_{4}$C Coatings for X-Ray Mirrors |
Jia-Li Wu1,2, Run-Ze Qi2,3, Qiu-Shi Huang2,3, Yu-Fei Feng2,3, Zhan-Shan Wang2,3**, Zi-Hua Xin1** |
1Department of Physics, Shanghai University, Shanghai 200444 2MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092 3Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092
|
|
Cite this article: |
Jia-Li Wu, Run-Ze Qi, Qiu-Shi Huang et al 2019 Chin. Phys. Lett. 36 120701 |
|
|
Abstract Boron carbide (B$_{4}$C) coatings have high reflectivity and are widely used as mirrors for free-electron lasers in the x-ray range. However, B$_{4}$C coatings fabricated by direct-current magnetron sputtering show a strong compressive stress of about $-3$ GPa. By changing the argon gas pressure and nitrogen-argon gas mixing ratio, we are able to reduce the intrinsic stress to less than $-1$ GPa for a 50-nm-thick B$_{4}$C coating. It is found that the stress in a coating deposited at 10 mTorr is $-0.69$ GPa, the rms roughness of the coating surface is 0.53 nm, and the coating reflectivity is 88%, which is lower than those of coatings produced at lower working pressures. When the working gas contains 8% nitrogen and 92% argon, the B$_{4}$C coating shows not only $-1.19$ GPa stress but also a low rms roughness of 0.16 nm, and the measured reflectivity is 93% at the wavelength of 0.154 nm.
|
|
Received: 27 May 2019
Published: 25 November 2019
|
|
PACS: |
07.85.Fv
|
(X- and γ-ray sources, mirrors, gratings, and detectors)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
|
Fund: Supported by the National Key R&D Program of China under Grant No 2016YFA0401304, the National Natural Science Foundation of China under Grant Nos 61621001, U1732268 and 11875203, and the Shanghai Municipal Science and Technology Major Project under Grant No 2017SHZDZX02. |
|
|
[1] | Störmer M, Horstmann C, Siewert F et al 2010 AIP Conf. Proc. (Melbourne Australia 27 September–2 October 2009) 1234 756 | [2] | Jacobi S, Steeg B, Wiesmann J et al 2002 Proc. SPIE (Seattle WA USA 7–11 July 2002) 4782 113 | [3] | Barty A, Soufli R, McCarville T et al 2009 Opt. Express 17 15508 | [4] | Flechsig U, Bahrdt J, Follath R and Reiche S 2016 AIP Conf. Proc. (New York, USA 6–10 July 2015) 1741 040040 | [5] | Störmer M, Siewert F and Gaudin J 2011 Proc. SPIE (Prague Czech Republic 18–21 April 2011) 8078 80780G | [6] | Soufli R, Fernández-Perea M, Hau-Riege S P et al 2011 Proc. SPIE (Prague Czech Republic 18–21 April 2011) 8077 807702 | [7] | Soufli R, Pivovaroff M J, Baker S L et al 2008 Proc. SPIE (San Diego California USA 10–14 August 2008) 7077 707716 | [8] | Milne C J, Schietinger T, Aiba M et al 2017 Appl. Sci. 7 720 | [9] | Hau-Riege S P, London R A, Bionta R M et al 2009 Appl. Phys. Lett. 95 111104 | [10] | Pivovaroff M J, Bionta R M, Mccarville T J, Soufli R and Stefan P M 2007 Proc. SPIE (San Diego California USA 26–30 August 2007) 6705 67050O | [11] | Barthelmess M and Bajt S 2011 Proc. SPIE (Prague Czech Republic 18–21 April 2011) 8077 807710 | [12] | Morawe Ch, Supruangnet R and Ch J 2015 Thin Solid Films 588 1 | [13] | Jiang H, Zhu J, Huang Q et al 2011 Appl. Surf. Sci. 257 9946 | [14] | Soufli R, Baker S L, Robinson J C et al 2009 Proc. SPIE (Prague Czech Republic 20–23 April 2009) 7361 73610U | [15] | Kulikovsky V, Vorlicek V, Ctvrtlik R, Bohac P and Lapsanska H 2011 Surf. Coat. Technol. 205 4052 | [16] | Störmer M, Siewert F, Horstmann C, Buchheim J and Gwalt G 2018 J. Synchrotron Rad. 25 116 | [17] | Störmer M, Siewert F and Sinn H 2016 J. Synchrotron Rad. 23 50 | [18] | Windt D L 2007 Proc. SPIE (San Diego California USA 26–30 August 2007) 6688 66880R | [19] | Wang Y, Huang Q, Yi Q et al 2017 Opt. Express 25 7749 | [20] | Huang Q, Liu Y, Yang Y et al 2018 Opt. Express 26 21803 | [21] | Bellotti J A and Windt D L 2009 Proc. SPIE (San Diego California USA 2–6 August 2009) 7437 743715 | [22] | Hultman L 2000 Vacuum 57 1 | [23] | Soufli R, Fernández-Perea M, Baker S L et al 2012 Appl. Opt. 51 2118 | [24] | Li K and Deng H 2018 Nucl. Inst. Methods Phys. Res. Sect. A 895 40 | [25] | Lv H, Leng Y, Yan Y and Wang H 2018 Nucl. Inst. Methods Phys. Res. Sect. A 908 167 | [26] | Panahi N et al 2016 Chin. Phys. Lett. 33 066802 | [27] | Stoney G G 1909 Proc. R. Soc. London Ser. A 82 172 | [28] | Morawe C, Ch J and Friedrich K 2010 Proc. SPIE (San Diego California USA 1–5 August 2010) 7802 78020B | [29] | Church E L, Takacs P Z and Leonard T A 1989 Proc. SPIE (San Diego, USA 7–11 August 1989) 1165 136 | [30] | Church E L 1988 Appl. Opt. 27 1518 | [31] | Niibe M, Nii H and Sugie Y 2002 Jpn. J. Appl. Phys. 41 3069 | [32] | Thornton J A 1986 J. Vac. Sci. & Technol. A 4 3059 | [33] | Moulder J F, Stickle W F, Sobol P E and Bomben K D 1995 Handbook of X-Ray Photoelectron Spectroscopy (USA: Physical Electronics Inc) pp 215–230 | [34] | Li P, Huang Q, Jiang L et al 2016 Vacuum 128 85 | [35] | Soufli R, Aquila A L, Salmassi F, Fernández-Perea M and Gullikson E M 2008 Appl. Opt. 47 4633 | [36] | Prakash A and Sundaram K B 2017 Appl. Surf. Sci. 396 484 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|