Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 117301    DOI: 10.1088/0256-307X/36/11/117301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$
Rui-Zhe Liu1,2,3†, Xiong Huang1,3†, Ling-Xiao Zhao1,3†, Li-Min Liu1,3, Jia-Xin Yin4, Rui Wu1,2, Gen-Fu Chen1,3,5, Zi-Qiang Wang6, Shuheng H. Pan1,2,3,5,7**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Physical Science Laboratory, Huairou National Comprehensive Science Center, Huairou, Beijing 101400
3School of Physics, University of Chinese Academy of Sciences, Beijing 100190
4Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, USA
5Songshan Lake Material Laboratory, Dongguan 523808
6Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
7CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao et al  2019 Chin. Phys. Lett. 36 117301
Download: PDF(1646KB)   PDF(mobile)(1639KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The topological edge states of two-dimensional topological insulators with large energy gaps furnish ideal conduction channels for dissipationless current transport. Transition metal tellurides $X$Te$_{5}$ ($X$=Zr, Hf) are theoretically predicted to be large-gap two-dimensional topological insulators, and the experimental observations of their bulk insulating gap and in-gap edge states have been reported, but the topological nature of these edge states still remains to be further elucidated. Here, we report our low-temperature scanning tunneling microscopy/spectroscopy study on single crystals of HfTe$_{5}$. We demonstrate a full energy gap of $\sim$80 meV near the Fermi level on the surface monolayer of HfTe$_{5}$ and that such an insulating energy gap gets filled with finite energy states when measured at the monolayer step edges. Remarkably, such states are absent at the edges of a narrow monolayer strip of one-unit-cell in width but persist at both step edges of a unit-cell wide monolayer groove. These experimental observations strongly indicate that the edge states of HfTe$_{5}$ monolayers are not trivially caused by translational symmetry breaking, instead they are topological in nature protected by the 2D nontrivial bulk properties.
Received: 03 June 2019      Published: 21 October 2019
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.43.Jn (Tunneling)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: Supported by the Chinese Academy of Sciences, the National Natural Science Foundation of China under Grant No 11227903, the BM-STC under Grant No Z181100004218007, the National Basic Research Program of China under Grant Nos 2015CB921300 and 2015CB921304, National Key R&D Program of China under Grant No 2017YFA0302903, the Strategic Priority Research Program B of the Chinese Academy of Sciences under Grant Nos XDB04040300 and XDB07000000, and Beijing Municipal Science & Technology Commission (Z181100004218007).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/11/117301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I11/117301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui-Zhe Liu
Xiong Huang
Ling-Xiao Zhao
Li-Min Liu
Jia-Xin Yin
Rui Wu
Gen-Fu Chen
Zi-Qiang Wang
Shuheng H. Pan
[1]Liu C, Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601
[2]Weng H, Ranjbar A, Liang Y, Song Z, Khazaei M, Yunoki S, Arai M, Kawazoe Y, Fang Z and Dai X 2015 Phys. Rev. B 92 075436
[3]Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[4]Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[5]Si C, Liu J, Xu Y, Wu J, Gu B L and Duan W 2014 Phys. Rev. B 89 115429
[6]Zhou J J, Feng W, Liu C C, Guan S and Yao Y 2014 Nano Lett. 14 4767
[7]Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[8]Nie S M, Song Z, Weng H and Fang Z 2015 Phys. Rev. B 91 235434
[9]Sun Y, Felser C and Yan B 2015 Phys. Rev. B 92 165421
[10]Xu Q, Song Z, Nie S, Weng H, Fang Z and Dai X 2015 Phys. Rev. B 92 205310
[11]Ma Y, Kou L, Li X, Dai Y, Smith S C and Heine T 2015 Phys. Rev. B 92 085427
[12]Yang F, Miao L, Wang Z F, Yao M Y, Zhu F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C, Liu F, Qian D, Gao C L and Jia J F 2012 Phys. Rev. Lett. 109 016801
[13]Pauly C, Rasche B, Koepernik K, Liebmann M, Pratzer M, Richter M, Kellner J, Eschbach M, Kaufmann B, Plucinski L, Schneider Claus M, Ruck M, van den Brink J and Morgenstern M 2015 Nat. Phys. 11 338
[14]Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G and Fu Y S 2017 Nat. Commun. 8 659
[15]Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K and Shen Z X 2017 Nat. Phys. 13 683
[16]Sessi P, Di Sante D, Szczerbakow A, Glott F, Wilfert S, Schmidt H, Bathon T, Dziawa P, Greiter M, Neupert T, Sangiovanni G, Story T, Thomale R and Bode M 2016 Science 354 1269
[17]Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z, Dai X, Weng H M, Qian T, Ding H and Pan S H 2016 Phys. Rev. X 6 021017
[18]Li X B, Huang W K, Lv Y Y, Zhang K W, Yang C L, Zhang B B, Chen Y B, Yao S H, Zhou J, Lu M H, Sheng L, Li S C, Jia J F, Xue Q K, Chen Y F and Xing D Y 2016 Phys. Rev. Lett. 116 176803
[19]Liu S, Wang M X, Chen C, Xu X, Jiang J, Yang L X, Yang H F, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Felser C, Yan B H, Liu Z K and Chen Y L 2018 APL Mater. 6 121111
[20]Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
Related articles from Frontiers Journals
[1] Ruiling Gao, Chao Liu, Le Fang, Bixia Yao, Wei Wu, Qiling Xiao, Shunbo Hu, Yu Liu, Heng Gao, Shixun Cao, Guangsheng Song, Xiangjian Meng, Xiaoshuang Chen, and Wei Ren. Two-Dimensional Electron Gas in MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ Heterojunction by First Principles Calculation[J]. Chin. Phys. Lett., 2022, 39(12): 117301
[2] Yu Zhang, Qingyun Zhang, Youqi Ke, and Ke Xia. Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling[J]. Chin. Phys. Lett., 2022, 39(8): 117301
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 117301
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 117301
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 117301
[6] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 117301
[7] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 117301
[8] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 117301
[9] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 117301
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 117301
[11] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 117301
[12] Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface[J]. Chin. Phys. Lett., 2021, 38(2): 117301
[13] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 117301
[14] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 117301
[15] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 117301
Viewed
Full text


Abstract