CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Fe-Doped All-Boron Fullerene B$_{40}$ with Tunable Electronic and Magnetic Properties as Single Molecular Devices |
An-Zhi Xie, Tian-Zhen Wen, Ji-Ling Li** |
School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275
|
|
Cite this article: |
An-Zhi Xie, Tian-Zhen Wen, Ji-Ling Li 2019 Chin. Phys. Lett. 36 117302 |
|
|
Abstract Systematic theoretical calculations are performed to investigate the dopant effect of Fe on stability, electronic and magnetic properties of the newly synthesized all-boron fullerene B$_{40}$. The results reveal that as a typical ferromagnetic element, Fe atoms can either be chemically externally adsorbed on, or internally encapsulated in the cage of B$_{40}$, with the binding energies ranging from 3.07 to 5.31 eV/atom. By introducing the dopant states from the doped Fe atom, the energy gaps of the Fe-doped B$_{40}$-based metallofullerenes are decreased. Our spin-polarized calculations indicate that Fe-doped metallofullerenes have attractive magnetic properties: with alternative binary magnetic moments between 4.00$\mu_{_{\rm B}}$ and 2.00$\mu_{_{\rm B}}$, depending on the resident sites of the doped Fe atom. The findings of the tunable electronic properties and binary magnetic moments of the Fe-doped B$_{40}$-based metallofullerenes imply that this type of metallofullerene may be applied in single molecular devices.
|
|
Received: 24 July 2019
Published: 21 October 2019
|
|
PACS: |
73.61.Wp
|
(Fullerenes and related materials)
|
|
61.72.U-
|
(Doping and impurity implantation)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
81.05.ub
|
(Fullerenes and related materials)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB931700, and the State Key Laboratory of Optoelectronic Materials and Technologies. |
|
|
[1] | Szwacki N G, Sadrzadeh A and Yakobson B I 2007 Phys. Rev. Lett. 98 166804 | [2] | Zhao J J et al 2010 J. Phys. Chem. A 114 9969 | [3] | Lv J et al 2014 Nanoscale 6 11692 | [4] | Prasad D L V K and Jemmis E D 2008 Phys. Rev. Lett. 100 165504 | [5] | Rajendra R Z, Tunna B et al 2009 Phys. Rev. B 79 161403 (R) | [6] | Zhai H J, Zhao Y F et al 2014 Nat. Chem. 6 727 | [7] | Chen Q, Li W L et al 2015 ACS Nano 9 754 | [8] | He R X and Zeng X C 2015 Chem. Commun. 51 3185 | [9] | Wei L et al 2015 Chin. Phys. Lett. 32 076501 | [10] | Li X D, Tang Y J et al 2011 Chin. Phys. Lett. 28 113102 | [11] | Zhang M, Feng X J et al 2012 Chin. Phys. B 21 056102 | [12] | Tang C M, Zhu W H et al 2010 Chin. Phys. B 19 033604 | [13] | Ordejón P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441 | [14] | Sánchez-Portal D, Ordejón P, Artacho E and Soler J M 1997 Int. J. Quantum Chem. 65 453 | [15] | Soler J M et al 2002 J. Phys.: Condens. Matter 14 2745 | [16] | Kroto H W et al 1985 Nature 318 162 | [17] | Fa W et al 2015 J. Phys. Chem. A 119 11208 | [18] | Batista R J C, Mazaoni M S C and Chacham H 2007 Phys. Rev. B 75 035417 | [19] | Dutty D M and Blackman J A 1998 Phys. Rev. B 58 7443 | [20] | Yagi Y et al 2004 Phys. Rev. B 69 075414 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|