Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 117302    DOI: 10.1088/0256-307X/36/11/117302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fe-Doped All-Boron Fullerene B$_{40}$ with Tunable Electronic and Magnetic Properties as Single Molecular Devices
An-Zhi Xie, Tian-Zhen Wen, Ji-Ling Li**
School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275
Cite this article:   
An-Zhi Xie, Tian-Zhen Wen, Ji-Ling Li 2019 Chin. Phys. Lett. 36 117302
Download: PDF(962KB)   PDF(mobile)(959KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Systematic theoretical calculations are performed to investigate the dopant effect of Fe on stability, electronic and magnetic properties of the newly synthesized all-boron fullerene B$_{40}$. The results reveal that as a typical ferromagnetic element, Fe atoms can either be chemically externally adsorbed on, or internally encapsulated in the cage of B$_{40}$, with the binding energies ranging from 3.07 to 5.31 eV/atom. By introducing the dopant states from the doped Fe atom, the energy gaps of the Fe-doped B$_{40}$-based metallofullerenes are decreased. Our spin-polarized calculations indicate that Fe-doped metallofullerenes have attractive magnetic properties: with alternative binary magnetic moments between 4.00$\mu_{_{\rm B}}$ and 2.00$\mu_{_{\rm B}}$, depending on the resident sites of the doped Fe atom. The findings of the tunable electronic properties and binary magnetic moments of the Fe-doped B$_{40}$-based metallofullerenes imply that this type of metallofullerene may be applied in single molecular devices.
Received: 24 July 2019      Published: 21 October 2019
PACS:  73.61.Wp (Fullerenes and related materials)  
  61.72.U- (Doping and impurity implantation)  
  81.05.Zx (New materials: theory, design, and fabrication)  
  81.05.ub (Fullerenes and related materials)  
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB931700, and the State Key Laboratory of Optoelectronic Materials and Technologies.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/11/117302       OR      https://cpl.iphy.ac.cn/Y2019/V36/I11/117302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
An-Zhi Xie
Tian-Zhen Wen
Ji-Ling Li
[1]Szwacki N G, Sadrzadeh A and Yakobson B I 2007 Phys. Rev. Lett. 98 166804
[2]Zhao J J et al 2010 J. Phys. Chem. A 114 9969
[3]Lv J et al 2014 Nanoscale 6 11692
[4]Prasad D L V K and Jemmis E D 2008 Phys. Rev. Lett. 100 165504
[5]Rajendra R Z, Tunna B et al 2009 Phys. Rev. B 79 161403 (R)
[6]Zhai H J, Zhao Y F et al 2014 Nat. Chem. 6 727
[7]Chen Q, Li W L et al 2015 ACS Nano 9 754
[8]He R X and Zeng X C 2015 Chem. Commun. 51 3185
[9]Wei L et al 2015 Chin. Phys. Lett. 32 076501
[10]Li X D, Tang Y J et al 2011 Chin. Phys. Lett. 28 113102
[11]Zhang M, Feng X J et al 2012 Chin. Phys. B 21 056102
[12]Tang C M, Zhu W H et al 2010 Chin. Phys. B 19 033604
[13]Ordejón P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441
[14]Sánchez-Portal D, Ordejón P, Artacho E and Soler J M 1997 Int. J. Quantum Chem. 65 453
[15]Soler J M et al 2002 J. Phys.: Condens. Matter 14 2745
[16]Kroto H W et al 1985 Nature 318 162
[17]Fa W et al 2015 J. Phys. Chem. A 119 11208
[18]Batista R J C, Mazaoni M S C and Chacham H 2007 Phys. Rev. B 75 035417
[19]Dutty D M and Blackman J A 1998 Phys. Rev. B 58 7443
[20]Yagi Y et al 2004 Phys. Rev. B 69 075414
Related articles from Frontiers Journals
[1] LIN Xin, WANG Hai-Long, PAN Hui, XU Huai-Zhe . The Unconventional Transport Properties of Dirac Fermions in Graphyne[J]. Chin. Phys. Lett., 2013, 30(7): 117302
[2] HAN Mei, ZHANG Yong, ZHENG Hong-Bo. Effect of Uniaxial Strain on Band Gap of Armchair-Edge Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(3): 117302
[3] RAN Wen-Qi, CHANG Jun, LU Han-Tao, SU Yue-Hua, LUO Hong-Gang, XIANG Tao. Geometrical Structure Effect on Localization Length of Carbon Nanotubes[J]. Chin. Phys. Lett., 2005, 22(9): 117302
[4] LI Hong-Nian, WU Tai-Quan, CHEN Xiao, LI Hai-Yang, BAO Shi-Ning, XU Ya-Bo, QIAN Hai-Jie, Ibrahim KURASH, LIU Feng-Qin. Preparation and Photoemission Spectra of Rb3C60 Single Crystal Thin Film[J]. Chin. Phys. Lett., 2002, 19(6): 117302
[5] GUO Li-Jun, MA Guo-Hong, SHAN Fu-Kai, MO Yu-Jun, QIAN Shi-Xiong . Photoinduced Charge Transfer in MBB-PPV/C60 Composite Film[J]. Chin. Phys. Lett., 2000, 17(11): 117302
[6] LI Xiang, WANG Hai-Qian, HOU Jian-Guo. In Situ Direct-Current Conductance Investigation of Cu/ C60 Nano-scale Granular Films[J]. Chin. Phys. Lett., 2000, 17(5): 117302
Viewed
Full text


Abstract