Chin. Phys. Lett.  2019, Vol. 36 Issue (1): 014701    DOI: 10.1088/0256-307X/36/1/014701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Unsteady Liquid Film Flow with a Prescribed Free-Surface Velocity
Tiegang Fang**, Fujun Wang
Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh NC 27695, USA
Cite this article:   
Tiegang Fang, Fujun Wang 2019 Chin. Phys. Lett. 36 014701
Download: PDF(578KB)   PDF(mobile)(579KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A liquid film flow over a flat plate is investigated by prescribing the unsteady interface velocity. With this prescribed surface velocity, the governing Navier–Stokes (NS) equations are transformed into a similarity ordinary differential equation, which is solved numerically. The flow characteristics is controlled by an unsteadiness parameter $S$ and the flow direction parameter ${\it \Lambda}$. The results show that solutions only exist for a certain range of the unsteadiness parameter, i.e., $S\leqslant 1$ for ${\it \Lambda} =-1$ and $S\leqslant -2.815877$ for ${\it \Lambda} =1$. In the solution domain, the dimensionless liquid film thickness $\beta $ decreases with $S$ for both the cases. The wall shear stress increases with the decrease of $S$ for ${\it \Lambda} =-1$. However, for ${\it \Lambda} =-1$ the shear stress magnitude first decreases and then increases with the decrease of $S$. There are no zero crossing points for the velocity profiles for both the cases. The profiles of velocity stay either positive or negative all the time, except for the wall zero velocity. Consequently, the vertical velocity becomes a monotonic function. To maintain the prescribed velocity, mass transpiration is generally needed, but for the shrinking film case it is possible to have an impermeable wall. The results are also an exact solution to the full NS equations.
Received: 11 September 2018      Published: 25 December 2018
PACS:  47.10.ad (Navier-Stokes equations)  
  47.15.Cb (Laminar boundary layers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/1/014701       OR      https://cpl.iphy.ac.cn/Y2019/V36/I1/014701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tiegang Fang
Fujun Wang
[1]Wang C Y 1990 Q. Appl. Math. 48 601
[2]Usha R and Sridharan R 1995 J. Fluids Eng. 117 81
[3]Andersson H I, Aarseth J B, Braud N and Dandapat B S 1996 J. Non-Newtonian Fluid Mech. 62 1
[4]Anderson H I, Aarseth J B and Dandapat B S 2000 Int. J. Heat Mass Transfer 43 69
[5]Chen C H 2003 Heat Mass Transfer 39 791
[6]Chen C H 2006 J. Non-Newtonian Fluid Mech. 135 128
[7]Dandapat B S, Santra B and Andersson H I 2003 Int. J. Heat Mass Transfer 46 3009
[8]Xu H, Pop I and You X C 2013 Int. J. Heat Mass Transfer 60 646
[9]Wang C 2006 Heat Mass Transfer 42 759
[10]Kistler S F and Schweizer P M 1997 Liquid Film Coating: Scientific Principles and Their Technological Implications (New York: Chapman & Hall) p 401
[11]Shine S R and Nidhi S S 2018 Propul. Power Res. 7 1
[12]Li Y H, Chao Y C, Amadé N S and Dunn-Rankin D 2008 Exp. Therm. Fluid Sci. 32 1118
[13]Roisman I V 2009 Phys. Fluids 21 052104
[14]Eggers J, Fontelos M A, Josser C and Zaleski S 2010 Phys. Fluids 22 062101
[15]Fang T, Wang F and Gao B 2018 Phys. Fluids 30 093603
[16]Yang K T 1958 ASME J. Appl. Mech. 25 421
Related articles from Frontiers Journals
[1] Tiegang Fang, Fujun Wang. Viscous Slip MHD Flow over a Moving Sheet with an Arbitrary Surface Velocity[J]. Chin. Phys. Lett., 2018, 35(10): 014701
[2] GAO Zhi, SHEN Yi-Qing. Analysis and Application of High Resolution Numerical Perturbation Algorithm for Convective-Diffusion Equation[J]. Chin. Phys. Lett., 2012, 29(10): 014701
[3] Azeem Shahzad, Ramzan Ali, and Masood Khan. On the Exact Solution for Axisymmetric Flow and Heat Transfer over a Nonlinear Radially Stretching Sheet[J]. Chin. Phys. Lett., 2012, 29(8): 014701
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 014701
[5] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 014701
[6] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 014701
[7] FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan. Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet[J]. Chin. Phys. Lett., 2010, 27(12): 014701
[8] FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan. Viscous Flow over an Unsteady Shrinking Sheet with Mass Transfer[J]. Chin. Phys. Lett., 2009, 26(1): 014701
[9] GUO Bo-Ling, YANG Gan-Shan, PU Xue-Ke. Blow-up and Global Smooth Solutions for Incompressible Three-Dimensional Navier--Stokes Equations[J]. Chin. Phys. Lett., 2008, 25(6): 014701
[10] W. Marques Jr.. Is Brenner's Modification to the Classical Navier--Stokes Equations Able to Describe Sound Propagation in Gases?[J]. Chin. Phys. Lett., 2008, 25(4): 014701
Viewed
Full text


Abstract