Chin. Phys. Lett.  2019, Vol. 36 Issue (1): 014205    DOI: 10.1088/0256-307X/36/1/014205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
First-Stokes Wavelengths at 1175.8 and 1177.1nm Generated in a Diode End-Pumped Nd:YVO$_{4}$/LuVO$_{4}$ Raman Laser
Qing-Qing Zhou1, Shen-Cheng Shi1, Si-Meng Chen1, Yan-Min Duan1,2**, Xi-Mei Zhang1, Jing Guo1, Bin Zhao3, Hai-Yong Zhu1**
1College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035
2International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060
3College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108
Cite this article:   
Qing-Qing Zhou, Shen-Cheng Shi, Si-Meng Chen et al  2019 Chin. Phys. Lett. 36 014205
Download: PDF(664KB)   PDF(mobile)(658KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A diode end-pumped acousto-optic Q-switched Nd:YVO$_{4}$/LuVO$_{4}$ Raman laser is demonstrated. Both YVO$_{4}$ and LuVO$_{4}$ can work as Raman gain, and slightly different active vibration modes of both crystals can result in different first-Stokes wavelengths. The output characteristic as the Raman competition between YVO$_{4}$ and LuVO$_{4}$ crystals for the laser systems with both shared cavity and coupled cavity is experimentally investigated. For the shared cavity, simultaneous Raman conversion in both YVO$_{4}$ and LuVO$_{4}$ crystals is achieved with dual-wavelength emission at 1175.8 and 1177.1 nm. The maximum output power of 1.03 W and the conversion efficiency of 10.3% are obtained. The 0.84 W single first Stokes wavelength at 1177.1 nm with LuVO$_{4}$ Raman conversion is achieved with the coupled cavity. The results show that the coupled cavity with short Raman cavity can obtain a narrow pulse width. The separated laser crystal and Raman gain media with different vanadates in shared cavity have advantages in achieving dual-wavelength lasers with small frequency intervals.
Received: 19 November 2018      Published: 25 December 2018
PACS:  42.55.Ye (Raman lasers)  
  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
  42.55.Xi (Diode-pumped lasers)  
Fund: Supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No LY19F050012, the National Natural Science Foundation of China under Grant No 61505147, the Laboratory Open Project of Wenzhou University under Grant No 18SK31, and the Research Funds of College Student Innovation of Zhejiang Province under Grant No 2018R42901.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/1/014205       OR      https://cpl.iphy.ac.cn/Y2019/V36/I1/014205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qing-Qing Zhou
Shen-Cheng Shi
Si-Meng Chen
Yan-Min Duan
Xi-Mei Zhang
Jing Guo
Bin Zhao
Hai-Yong Zhu
[1]Piper J A and Pask H M 2007 IEEE J. Sel. Top. Quantum Electron. 13 692
[2]Hisamuddin N, Zakaria U N, Zulkifli M Z, Latif A A, Ahmad H and Harun S W 2016 Chin. Phys. Lett. 33 074208
[3]Li F, Zhao W Q, Qiao X, Xia C Q, Wang L C, Fan H B and Shen M Y 2016 Chin. Phys. B 25 114207
[4]Su F F, Zhang X Y, Wang Q P, Chang J, Jia P, Li S T, Zhang X L and Cong Z H 2007 Chin. Phys. B 16 3370
[5]Men S J, Liu Z J, Cong Z H, Liu Y, Xia J B, Zhang S S, Cheng W Y, Li Y F, Tu C Y and Zhang X Y 1988 Opt. Lett. 13 530
[6]Duan Y M, Zhu H Y, Zhang Y J, Zhang G, Zhang J, Tang D Y and Kaminskii A A 2016 Sci. Rep. 6 33852
[7]Frank M, Smetanin S N, Jelínek M, Vyhlídal D, Ivleva L I, Zverev P G and Kubeček V 2018 Opt. Lett. 43 2527
[8]Liu Y, Liu Z J, Cong Z H, Men S J, Xia J B, Rao H and Zhang S S 2015 Chin. Phys. Lett. 32 124201
[9]Kaminskii A A, Ueda K, Eichler H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T and Lu J 2001 Opt. Commun. 194 201
[10]Chen Y F 2004 Opt. Lett. 29 1915
[11]Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J and Tang D Y 2017 IEEE Photon. J. 9 1500807
[12]Lee C Y, Chang C C, Cho C Y, Tuan P H and Chen Y F 2015 IEEE J. Sel. Top. Quantum Electron. 21 1600305
[13]Lee A J, Lin J and Pask H M 2010 Opt. Lett. 35 3000
[14]Zhu H Y, Guo J H, Duan Y M, Zhang J, Zhang Y C, Xu C W, Wang H Y and Fan D Y 2018 Opt. Lett. 43 345
[15]Zhang X, Zhang Y C, Li J, Li R J, Song Q K, Zhang J L and Fan L 2017 Acta Phys. Sin. 66 194203 (in Chinese)
[16]Zhang Y J et al 2011 Acta Phys. Sin. 60 094209 (in Chinese)
[17]Kaminskii A A, Rhee H, Eichler H J, Ueda K, Oka K and Shibata H 2008 Appl. Phys. B 93 865
[18]Kaminskii A A, Bettinelli M, Dong J, Jaque D and Ueda K 2009 Laser Phys. Lett. 6 374
[19]Rao R, Garg A B, Sakuntala T, Achary S N and Tyagi A K 2009 J. Solid State Chem. 182 1879
[20]Xu M, Yu H H, Zhang H J, Xu X G and Wang J Y 2011 J. Rare Earths 29 207
[21]Kaminskii A A, Lux O, Rhee H, Eichler H J, Ueda K, Yoneda H, Shirakawa A, Zhao B, Chen J, Dong J and Zhang J 2012 Laser Phys. Lett. 9 879
[22]Dimitrov D Z, Rafailov P M, Chen Y F, Lee C S, Todorov R and Juang J Y 2017 J. Cryst. Growth 473 34
[23]Lü Y F, Zhang X H, Li S T, Xia J, Cheng W B and Xiong Z 2010 Opt. Lett. 35 2964
[24]Tan Y, Fu X H, Zhai P and Zhang X H 2013 Laser Phys. 23 045806
[25]Jiang W, Zhu S Q, Chen X Z, Liu Y M, Che Z Q, Yin H, Li Z, Wang S and Chen Y H 2014 Appl. Opt. 53 1328
[26]Duan Y M, Zhu H Y, Wang H Y, Zhang Y J and Chen Z Q 2016 Opt. Express 24 5565
[27]Cai W Y, Duan Y M, Li J T, Yan L F, Mao M J, Zhao B and Zhu H Y 2015 Chin. Phys. Lett. 32 034206
[28]Zhang Y C, Fan L, Wei C F, Min X and Ren S X 2018 Acta Phys. Sin. 67 024206 (in Chinese)
[29]Zhang H N, Chen X H, Wang Q P and Li P 2015 Chin. Phys. Lett. 32 014203
[30]Su K W, Chang Y T and Chen Y F 2007 Appl. Phys. B 88 47
[31]Zhang Y Y, Huo Y J, He S F and Gong K 2010 Chin. Phys. Lett. 27 124207
[32]Chen J B, Zhu H B, Xia W, Guo D M, Hao H and Wang M 2017 Opt. Express 25 560
[33]Zhao P, Ragam S, Ding Y J and Zotova I B 2011 Opt. Lett. 36 4818
Related articles from Frontiers Journals
[1] Jing-Jie Hao, Wei Tu, Nan Zong, Yu Shen, Shen-Jin Zhang, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. Coaxial Multi-Wavelength Generation in YVO$_{4}$ Crystal with Stimulated Raman Scattering Excited by a Picosecond-Pulsed 1064 Laser[J]. Chin. Phys. Lett., 2020, 37(4): 014205
[2] N. Hisamuddin, U. N. Zakaria, M. Z. Zulkifli, A. A. Latiff, H. Ahmad, S. W. Harun. Q-Switched Raman Fiber Laser with Molybdenum Disulfide-Based Passive Saturable Absorber[J]. Chin. Phys. Lett., 2016, 33(07): 014205
[3] LIU Yang, LIU Zhao-Jun, CONG Zhen-Hua, MEN Shao-Jie, XIA Jin-Bao, RAO Han, ZHANG Sa-Sa. Efficient Diode-End-Pumped Actively Q-Switched Nd:YLF/SrWO4 Raman Laser[J]. Chin. Phys. Lett., 2015, 32(12): 014205
[4] CAI Xiang-Long, ZHOU Can-Hua, ZHOU Dong-Jian, LIU Jin-Bo, GUO Jing-Wei, GUI Lin. H2 Stimulated Raman Scattering in a Multi-pass Cell with a Herriott Configuration[J]. Chin. Phys. Lett., 2015, 32(11): 014205
[5] CAI Wei-Yang, DUAN Yan-Min, LI Jiang-Tao, YAN Lin-Fei, MAO Meng-Jiao, ZHAO Bin, ZHU Hai-Yong. Diode-Pumped c-Cut Nd:Lu0.99La0.01VO4 Self-Stimulated Raman Laser at 1181 nm[J]. Chin. Phys. Lett., 2015, 32(03): 014205
[6] ZHANG Hua-Nian, CHEN Xiao-Han, WANG Qing-Pu, LI Ping. Efficient Diode-Pumped Actively Q-Switched Ceramic Nd:YAG/YVO4 Raman Laser Operating at 1657 nm[J]. Chin. Phys. Lett., 2015, 32(01): 014205
[7] XU Yang, CHEN Meng, LI Zheng-Wei, BAI Zhen-Xu, YANG Chao, CHEN Li-Yuan, LI Gang, LIU Yang. Raman Frequency Conversion of Picosecond Pulses in the YVO4 Crystal[J]. Chin. Phys. Lett., 2013, 30(8): 014205
[8] ZHANG Li-Sheng, FANG Yan, WANG Pei-Jie. Surface Enhanced Raman Scattering Characterization of the ZnO Films Modified with Silver Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(11): 014205
[9] ZHU Hai-Yong**, ZHANG Ge, DUAN Yan-Min, HUANG Cheng-Hui, WEI Yong . Compact Continuous-Wave Nd:YVO4 Laser with Self-Raman Conversion and Sum Frequency Generation[J]. Chin. Phys. Lett., 2011, 28(5): 014205
[10] M. Singh, P. Aghamkar, S. Duhan. Enhancement of Second- and Third-Order Nonlinear Optical Susceptibilities in Magnetized Semiconductors[J]. Chin. Phys. Lett., 2008, 25(9): 014205
[11] WANG Zheng-Ping, HU Da-Wei, FANG Xin, ZHANG Huai-Jin, XU Xin-Guang, WANG Ji-Yang, SHAO Zong-Shu. Eye-Safe Raman Laser at μm Based on BaWO4 Crystal[J]. Chin. Phys. Lett., 2008, 25(1): 014205
[12] M. Singh, P. Aghamkar, P. K. Sen. Stimulated Raman Scattering in a Weakly Polar III-V Semiconductor: Effect of dc Magnetic Field and Free Carrier Concentration[J]. Chin. Phys. Lett., 2007, 24(8): 014205
[13] WANG Hong-Bo, LIANG Hui-Min, WANG Zhi-Hua, LUO Shi-Rong, YANG Jing-Guo, ZHENG Wan-Guo, WEI Xiao-Feng, HE Shao-Bo, CHEN Yuan-Bin. High Efficient C6H12 Raman Laser Enhanced by DCM Fluorescence[J]. Chin. Phys. Lett., 2007, 24(1): 014205
[14] WANG Bao-Shan, PENG Ji-Ying, MIAO Jie-Guang, LI Yi-Min, HAO Er-Juan, ZHNG Zhe, GAO Lan-Lan, TAN Hui-Ming. Diode End-Pumped Passively Q-Switched Nd3+:GdVO4 Self-Raman Laser at 1176nm[J]. Chin. Phys. Lett., 2007, 24(1): 014205
[15] YAN Pei-Guang, RUAN Shuang-Chen, GUO Chun-Yu, YU Yong-Qin, SU Hong, LIU Cheng-Xiang. A Low-Pump-Threshold Photonic Crystal Fibre Raman Laser[J]. Chin. Phys. Lett., 2006, 23(11): 014205
Viewed
Full text


Abstract