Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 090302    DOI: 10.1088/0256-307X/35/9/090302
GENERAL |
Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method
Cai-Lang Xie1, Ying Guo1,2, Yi-Jun Wang1, Duan Huang1, Ling Zhang1**
1School of Information Science and Engineering, Central South University, Changsha 410083
2School of IOT Engineering, Taihu University, Wuxi 214064
Cite this article:   
Cai-Lang Xie, Ying Guo, Yi-Jun Wang et al  2018 Chin. Phys. Lett. 35 090302
Download: PDF(1308KB)   PDF(mobile)(1303KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering the ocean water's optical attenuation and the roughness of the sea surface, we analyze the security of continuous-variable (CV) quantum key distribution (QKD) based air-to-water channel. The effects of the absorption and scattering on the transmittance of underwater quantum channel and the maximum secure transmission distance are studied. Considering the roughness of the sea surface, we simulate the performance bounds of CV QKD with different wind speeds using the Monte Carlo method. The results show that even if the secret key rate gradually reduces as the wind speed increases, the maximum transmission distance will not be affected obviously. Compared to the works regarding short-distance underwater optical communication, our research represents a significant step towards establishing secure communication between air platform and submarine vehicle.
Received: 12 March 2018      Published: 29 August 2018
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61572529.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/090302       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/090302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cai-Lang Xie
Ying Guo
Yi-Jun Wang
Duan Huang
Ling Zhang
[1]Gisin N et al 2002 Rev. Mod. Phys. 74 145
[2]Lo H K et al 2014 Nat. Photon. 8 595
[3]Pirandola S et al 2015 Nat. Photon. 9 397
[4]Sun S H et al 2010 Opt. Lett. 35 1203
[5]Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[6]Leverrier A et al 2010 Phys. Rev. A 81 062343
[7]Peuntinger C et al 2014 Phys. Rev. Lett. 113 060502
[8]Guo Y et al 2018 Phys. Rev. A 97 052326
[9]Kevin G et al 2017 Optica 4 611
[10]Jouguet P et al 2013 Nat. Photon. 7 378
[11]Gehring T et al 2015 Nat. Commun. 6 8795
[12]Nathan W et al 2016 Optica 3 634
[13]Liao Q et al 2018 New J. Phys. 20 023015
[14]Bai Z L et al 2016 Sci. Chin.-Phys. Mech. Astron. 59 614201
[15]Elser D et al 2009 New J. Phys. 11 045014
[16]Marcikic I et al 2003 Nature 421 509
[17]Bennett C H et al 1992 J. Cryptology 5 3
[18]Shi P, Zhao S C, Gu Y J and Li W D 2015 J. Opt. Soc. Am. A 32 349
[19]Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G and Jin X M 2017 Opt. Express 25 19795
[20]Philip A H and Robert A L 2014 Proc. SPIE 9114 9114
[21]Charles C and Walter M 1954 J. Opt. Soc. Am. 44 838
[22]Kong M W, Wang J L, Chen Y F, Ali T, Sarwar R, Qiu Y, Wang S L, Han J and Xu J 2017 Opt. Express 25 21509
[23]Zunino L, Gulich D, Funes G and Perez D G 2015 Opt. Lett. 40 3145
[24]Berman G P, Chumak A A and Gorshkov V N 2007 Phys. Rev. E 76 056606
[25]Jakeman E and Ridley K D 2007 Waves Random Complex Media 17 405
[26]Vasylyev D Y, Semenov A A and Vogel W 2012 Phys. Rev. Lett. 108 220501
[27]Vladyslav C U, Bettina H, Christian P, Christoffer W, Christoph M, Gerd L and Radim F 2012 New J. Phys. 14 093048
[28]Dong R F, Lassen M, Heersink J, Marquardt C, Filip R, Leuchs G and Andersen U L 2010 Phys. Rev. A 82 012312
[29]Guo Y, Xie C L, Liao Q, Zhao W, Zeng G H and Huang D 2017 Phys. Rev. A 96 022320
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 090302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 090302
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 090302
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 090302
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 090302
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 090302
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 090302
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 090302
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 090302
[10] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 090302
[11] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 090302
[12] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 090302
[13] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 090302
[14] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 090302
[15] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 090302
Viewed
Full text


Abstract