Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 090201    DOI: 10.1088/0256-307X/35/9/090201
GENERAL |
Higher-Order Rogue Wave Solutions to a Spatial Discrete Hirota Equation
Jun Yang, Zuo-Nong Zhu**
School of Mathematial Sciences, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
Jun Yang, Zuo-Nong Zhu 2018 Chin. Phys. Lett. 35 090201
Download: PDF(2512KB)   PDF(mobile)(3074KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The higher-order rogue wave (RW) for a spatial discrete Hirota equation is investigated by the generalized (1,$N-1$)-fold Darboux transformation. We obtain the higher-order discrete RW solution to the spatial discrete Hirota equation. The fundamental RWs exhibit different amplitudes and shapes associated with the spectral parameters. The higher-order RWs display triangular patterns and pentagons with different peaks. We show the differences between the RW of the spatially discrete Hirota equation and the discrete nonlinear Schrödinger equation. Using the contour line method, we study the localization characters including the length, width, and area of the first-order RWs of the spatially discrete Hirota equation.
Received: 29 March 2018      Published: 29 August 2018
PACS:  02.30.Ik (Integrable systems)  
  04.20.Jb (Exact solutions)  
  05.45.Yv (Solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11671255, and the Ministry of Economy and Competitiveness of Spain under Grant No MTM2016-80276-P (AEI/FEDER,EU).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/090201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/090201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Yang
Zuo-Nong Zhu
[1]Osborne A R and Onorato M 2000 Phys. Lett. A 275 386
[2]Chabchoub A et al 2011 Phys. Rev. Lett. 106 204502
[3]Kharif C et al 2009 Rogue Waves in the Ocean (Berlin: Springer)
[4]Solli D R et al 2007 Nature 450 1054
[5]Shats M et al 2010 Phys. Rev. Lett. 104 104503
[6]Yan Z Y 2011 Phys. Lett. A 375 4274
[7]Stenflo L and Marklund M 2010 J. Plasma Phys. 76 293
[8]Akhmediev N et al 2009 Phys. Lett. A 373 675
[9]Kibler B et al 2010 Nat. Phys. 6 790
[10]Chabchoub A et al 2012 Phys. Rev. X 2 011015
[11]Bailung H et al 2011 Phys. Rev. Lett. 107 255005
[12]Peregrine D H 1983 J. Aust. Math. Soc. Ser. B 25 16
[13]Akhmediev N et al 2009 Phys. Rev. E 80 026601
[14]Dubard P and Matveev V B 2011 Nat. Hazards Earth Syst. Sci. 11 667
[15]Kedziora D J et al 2011 Phys. Rev. E 84 056611
[16]Guo B L et al 2012 Phys. Rev. E 85 026607
[17]Ohta Y and Yang J K 2012 Proc. R. Soc. London Ser. A 468 1716
[18]Tao Y and He J S 2012 Phys. Rev. E 85 026601
[19]Li L et al 2013 Ann. Phys. 334 198
[20]Ohta Y and Yang J K 2012 Phys. Rev. E 86 036604
[21]Ohta Y and Yang J K 2013 J. Phys. A 46 105202
[22]Ankiewicz A et al 2010 Phys. Rev. E 81 046602
[23]Ohta Y and Yang J K 2014 J. Phys. A 47 255201
[24]Wen X Y et al 2016 Chaos 26 123110
[25]Ankiewicz A et al 2010 Phys. Rev. E 82 026602
[26]Pickering A et al 2016 Proc. R. Soc. A 472 20160628
[27]Hirota R 1973 J. Math. Phys. 14 805
[28]Kodama K 1985 J. Stat. Phys. 39 597
[29]Agrawal G P 1995 Nonlinear Fiber Optics (New York: Academic)
[30]Shukla P K and Eliasson B 2010 Phys. Usp. 53 51
[31]Qiu D Q et al 2015 Proc. R. Soc. A 471 20150236
[32]Feng Y et al 2017 Commun. Nonlinear Sci. Numer. Simul. 44 245
[33]He J S et al 2013 Phys. Rev. E 87 052914
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 090201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 090201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 090201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 090201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 090201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 090201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 090201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 090201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 090201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 090201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 090201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 090201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 090201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 090201
Viewed
Full text


Abstract