CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction |
Xu-Peng Zhao1,2, Da-Hai Wei1,2, Jun Lu1,2, Si-Wei Mao1,2, Zhi-Feng Yu1,2, Jian-Hua Zhao1,2** |
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Xu-Peng Zhao, Da-Hai Wei, Jun Lu et al 2018 Chin. Phys. Lett. 35 087501 |
|
|
Abstract We report on the tunneling anisotropic magnetoresistance in antiferromagnetic perpendicular tunnel junction consisting of $L1_{0}$-MnGa/FeMn/AlO$_{x}$/Pt grown on GaAs (001) substrates by molecular-beam epitaxy. The temperature-dependent perpendicular exchange bias effect reveals an exchange coupling between ferromagnetic $L1_{0}$-MnGa and antiferromagnetic FeMn. The rotation of antiferromagnetic spins in FeMn can be driven by perpendicularly magnetized $L1_{0}$-MnGa due to the exchange-spring effect at the interface and leads to room-temperature tunneling anisotropic magnetoresistance ratio of 0.86%. We also find that the tunneling anisotropic magnetoresistance strongly depends on temperature and angle. These results have broadened the material selection range for high performance antiferromagnetic spintronic devices.
|
|
Received: 11 April 2018
Published: 15 July 2018
|
|
PACS: |
75.50.Ee
|
(Antiferromagnetics)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
75.50.Vv
|
(High coercivity materials)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2015CB921500, the National Natural Science Foundation of China under Grant Nos 61334006 and 11774339, the Key Research Project of Frontier Science of the Chinese Academy of Sciences under Grant No QYZDY-SSW-JSC015, and the Key Research Program of the Chinese Academy of Sciences under Grant No XDPB08-2. |
|
|
[1] | Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 | [2] | Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 | [3] | Chappert C, Fert A and van Dau F N 2007 Nat. Mater. 6 813 | [4] | Rüster C, Gould C, Jungwirth T, Sinova J, Schott G M, Giraud R, Brunner K, Schmidt G and Molenkamp L W 2005 Phys. Rev. Lett. 94 027203 | [5] | Gould C, Rüster C, Jungwirth T, Girgis E, Schott G M, Giraud R, Brunner K, Schmidt G and Molenkamp L W 2004 Phys. Rev. Lett. 93 117203 | [6] | Uemura T, Harada M, Matsuda K I and Yamamoto M 2010 Appl. Phys. Lett. 96 252106 | [7] | Park B G, Wunderlich J, Williams D A, Joo S J, Jung K Y, Shin K H, Olejník K, Shick A B and Jungwirth T 2008 Phys. Rev. Lett. 100 087204 | [8] | Scholl A, Liberati M, Arenholz E, Ohldag H and Stöhr J 2004 Phys. Rev. Lett. 92 247201 | [9] | Martí X, Park B G, Wunderlich J, Reichlová H, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H and Jungwirth T 2012 Phys. Rev. Lett. 108 017201 | [10] | Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M and Stöhr J 2003 Phys. Rev. Lett. 91 017203 | [11] | Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B and Jungwirth T 2011 Nat. Mater. 10 347 | [12] | Wang K, Sanderink J G M, Bolhuis T, van der Wiel W G and de Jong M P 2015 Sci. Rep. 5 15498 | [13] | Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D and Fullerton E E 2006 Nat. Mater. 5 210 | [14] | Sbiaa R, Law R, Lua S Y H, Tan E L, Tahmasebi T, Wang C C and Piramanayagam S N 2011 Appl. Phys. Lett. 99 092506 | [15] | Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721 | [16] | Wang Y Y, Song C, Cui B, Wang G Y, Zeng F and Pan F 2012 Phys. Rev. Lett. 109 137201 | [17] | Wang Y Y, Song C, Wang G Y, Zeng F and Pan F 2014 New J. Phys. 16 123032 | [18] | Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H and Zheng H Z 2012 Adv. Mater. 24 4547 | [19] | Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y and Miyazaki T 2011 Phys. Rev. Lett. 106 117201 | [20] | Kurt H, Rode K, Venkatesan M, Stamenov P and Coey J M D 2011 Phys. Rev. B 83 020405 | [21] | Ekholm M and Abrikosov I A 2011 Phys. Rev. B 84 104423 | [22] | Schulthess T C, Butler W, Stocks G M, Maat S and Mankey G J 1999 J. Appl. Phys. 85 4842 | [23] | Nakamura K, Ito T, Freeman A J, Zhong L and Fernandezdecastro J 2003 Phys. Rev. B 67 014405 | [24] | Zhao X P, Lu J, Mao S W, Yu Z F, Wei D H and Zhao J H 2018 Appl. Phys. Lett. 112 042403 | [25] | Paul D I 1982 J. Appl. Phys. 53 1649 | [26] | Zhang B and Soffa W A 1994 Scr. Metall. Mater. 30 683 | [27] | Tsang C, Heiman N and Lee K 1981 J. Appl. Phys. 52 2471 | [28] | Ambrose T and Chien C L 1998 J. Appl. Phys. 83 6822 | [29] | Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413 | [30] | Dijken S V, Crofton M, Czapkiewicz M, Zoladz M and Stobiecki T 2006 J. Appl. Phys. 99 083901 | [31] | Brück S, Sort J, Baltz V, Suriñach S, Muñoz J S, Dieny B, Baró M D and Nogués J 2005 Adv. Mater. 17 2978 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|