Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 087303    DOI: 10.1088/0256-307X/35/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides
Shou-juan Zhang1, Wei-xiao Ji1, Chang-wen Zhang1**, Shu-feng Zhang1, Ping Li1, Sheng-shi Li2, Shi-shen Yan2**
1School of Physics and Technology, University of Jinan, Jinan 250022
2School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
Cite this article:   
Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang et al  2018 Chin. Phys. Lett. 35 087303
Download: PDF(1790KB)   PDF(mobile)(1781KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Though the quantum spin Hall effect (QSHE) in two-dimensional (2D) crystals has been widely explored, the experimental realization of quantum transport properties is only limited to HgTe/CdTe or InAs/GaSb quantum wells. Here we employ a tight-binding model on the basis of $d_{z^{2}}$, $d_{xy}$, and $d_{x^{2}-y^{2}}$ orbitals to propose QSHE in the triangular lattice, which are driven by a crossing of electronic bands at the ${\it \Gamma}$ point. Remarkably, 2D oxidized Mxenes W$_{2}$M$_{2}$C$_{3}$ are ideal materials with nontrivial gap of 0.12 eV, facilitating room-temperature observations in experiments. We also find that the nontrivially topological properties of these materials are sensitive to the cooperative effect of the electron correlation and spin-orbit coupling. Due to the feasible exfoliation from its 3D MAX phase, our work paves a new direction towards realizing QSHE with low dissipation.
Received: 04 February 2018      Published: 15 July 2018
PACS:  73.43.-f (Quantum Hall effects)  
  73.43.Nq (Quantum phase transitions)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Supported by the Natural Science Foundation of Shandong Province under Grant No ZR2018MA033, and the National Natural Science Foundation of China under Grant No 11274143.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/087303       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/087303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shou-juan Zhang
Wei-xiao Ji
Chang-wen Zhang
Shu-feng Zhang
Ping Li
Sheng-shi Li
Shi-shen Yan
[1]Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2]Yan B H and Zhang S C 2012 Rep. Prog. Phys. 75 096501
[3]Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[4]Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[5]Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[6]Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[7]Murakami S 2007 New J. Phys. 9 356
[8]König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[9]Zimmermann H, Keller R C, Meisen P and Seelmann-Eggebert M 1997 Surf. Sci. 377-379 904
[10]Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[11]Liu C X, Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601
[12]Wang Y P, Ji W X, Zhang C W, Li P, Wang P J, Kong B, Li S S, Yan S S and Liang K 2017 Appl. Phys. Lett. 110 233107
[13]Ma Y D, Dai Y, Kou L Z, Frauenheim T and Heine T 2015 Nano Lett. 15 1083
[14]Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101
[15]Wang Y P, Ji W X, Zhang C W, Li P, Li F, Wang P J, Li S S and Yan S S 2016 Appl. Phys. Lett. 108 073104
[16]Xu Y, Tang P Z and Zhang S C 2015 Phys. Rev. B 92 081112
[17]Lima E N and Schmidt T M 2015 Phys. Rev. B 91 075432
[18]Nourbakhsh Z and Vaez A 2016 Chin. Phys. B 25 037101
[19]Zhang R W, Zhang C W, Ji W X, Li S S, Hu S J, Yan S S, Li P, Wang P J and Li F 2015 New J. Phys. 17 083036
[20]Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 EACS Appl. Mater. Inter. 9 41443
[21]Zhao H, Zhang C W, Ji W X, Zhang R W, Li S S, Yan S S, Zhang B M, Li P and Wang P J 2016 Sci. Rep. 6 20152
[22]Weng H M, Ranjbar A, Liang Y Y, Song Z D, Khazaei M, Yunoki S, Arai M, Kawazoe Y, Fang Z and Dai X 2015 Phys. Rev. B 92 075436
[23]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24]Khazaei M, Arai M, Sasaki T, Estili M and Sakka Y 2014 Phys. Chem. Chem. Phys. 16 7841
[25]Wang F, Yang C, Duan C, Xiao D, Tang Y and Zhu J 2014 J. Electrochem. Soc. 162 B16
[26]Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[27]Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[28]Weng H M, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[29]Sun Y, Felser C and Yan B H 2015 Phys. Rev. B 92 165421
[30]Zhou L J, Kou L Z, Sun Y, Felser C, Hu F M, Shan G C, Smith S C, Yan B H and Frauenheim T 2015 Nano Lett. 15 7867
[31]Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[32]Grimme S 2006 J. Comput. Chem. 27 1787
[33]Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S et al 2008 Phys. Rev. Lett. 101 076402
[34]Wang Y L, Wang Z J, Fang Z and Dai X 2015 Phys. Rev. B 91 125139
[35]Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[36]Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Adv. Mater. 23 4248
[37]Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y and Barsoum M W 2012 ACS Nano 6 1322
[38]Yang J, Naguib M, Ghidiu M, Pan L M, Gu J, Nanda J, Halim J, Gogotsi Y, Barsoum M W and Zhou Y 2016 J. Am. Ceram. Soc. 99 660
Related articles from Frontiers Journals
[1] Tian-Sheng Zeng, Liangdong Hu, and W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 087303
[2] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 087303
[3] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 087303
[4] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 087303
[5] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 087303
[6] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 087303
[7] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 087303
[8] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 087303
[9] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 087303
[10] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 087303
[11] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 087303
[12] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 087303
[13] Xia Dai, Cong-Cong Le, Xian-Xin Wu, Sheng-Shan Qin, Zhi-Ping Lin, Jiang-Ping Hu. Topological Phase in Non-centrosymmetric Material NaSnBi[J]. Chin. Phys. Lett., 2016, 33(12): 087303
[14] Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian. Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$[J]. Chin. Phys. Lett., 2016, 33(11): 087303
[15] SUN Liang, WAN Shao-Long. Chiral Current in the Lattice Model of Weyl Semimetal[J]. Chin. Phys. Lett., 2015, 32(5): 087303
Viewed
Full text


Abstract