CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides |
Shou-juan Zhang1, Wei-xiao Ji1, Chang-wen Zhang1**, Shu-feng Zhang1, Ping Li1, Sheng-shi Li2, Shi-shen Yan2** |
1School of Physics and Technology, University of Jinan, Jinan 250022 2School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
|
|
Cite this article: |
Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang et al 2018 Chin. Phys. Lett. 35 087303 |
|
|
Abstract Though the quantum spin Hall effect (QSHE) in two-dimensional (2D) crystals has been widely explored, the experimental realization of quantum transport properties is only limited to HgTe/CdTe or InAs/GaSb quantum wells. Here we employ a tight-binding model on the basis of $d_{z^{2}}$, $d_{xy}$, and $d_{x^{2}-y^{2}}$ orbitals to propose QSHE in the triangular lattice, which are driven by a crossing of electronic bands at the ${\it \Gamma}$ point. Remarkably, 2D oxidized Mxenes W$_{2}$M$_{2}$C$_{3}$ are ideal materials with nontrivial gap of 0.12 eV, facilitating room-temperature observations in experiments. We also find that the nontrivially topological properties of these materials are sensitive to the cooperative effect of the electron correlation and spin-orbit coupling. Due to the feasible exfoliation from its 3D MAX phase, our work paves a new direction towards realizing QSHE with low dissipation.
|
|
Received: 04 February 2018
Published: 15 July 2018
|
|
PACS: |
73.43.-f
|
(Quantum Hall effects)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
Fund: Supported by the Natural Science Foundation of Shandong Province under Grant No ZR2018MA033, and the National Natural Science Foundation of China under Grant No 11274143. |
|
|
[1] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | [2] | Yan B H and Zhang S C 2012 Rep. Prog. Phys. 75 096501 | [3] | Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802 | [4] | Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 | [5] | Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802 | [6] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | [7] | Murakami S 2007 New J. Phys. 9 356 | [8] | König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 | [9] | Zimmermann H, Keller R C, Meisen P and Seelmann-Eggebert M 1997 Surf. Sci. 377-379 904 | [10] | Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603 | [11] | Liu C X, Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601 | [12] | Wang Y P, Ji W X, Zhang C W, Li P, Wang P J, Kong B, Li S S, Yan S S and Liang K 2017 Appl. Phys. Lett. 110 233107 | [13] | Ma Y D, Dai Y, Kou L Z, Frauenheim T and Heine T 2015 Nano Lett. 15 1083 | [14] | Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101 | [15] | Wang Y P, Ji W X, Zhang C W, Li P, Li F, Wang P J, Li S S and Yan S S 2016 Appl. Phys. Lett. 108 073104 | [16] | Xu Y, Tang P Z and Zhang S C 2015 Phys. Rev. B 92 081112 | [17] | Lima E N and Schmidt T M 2015 Phys. Rev. B 91 075432 | [18] | Nourbakhsh Z and Vaez A 2016 Chin. Phys. B 25 037101 | [19] | Zhang R W, Zhang C W, Ji W X, Li S S, Hu S J, Yan S S, Li P, Wang P J and Li F 2015 New J. Phys. 17 083036 | [20] | Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 EACS Appl. Mater. Inter. 9 41443 | [21] | Zhao H, Zhang C W, Ji W X, Zhang R W, Li S S, Yan S S, Zhang B M, Li P and Wang P J 2016 Sci. Rep. 6 20152 | [22] | Weng H M, Ranjbar A, Liang Y Y, Song Z D, Khazaei M, Yunoki S, Arai M, Kawazoe Y, Fang Z and Dai X 2015 Phys. Rev. B 92 075436 | [23] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | [24] | Khazaei M, Arai M, Sasaki T, Estili M and Sakka Y 2014 Phys. Chem. Chem. Phys. 16 7841 | [25] | Wang F, Yang C, Duan C, Xiao D, Tang Y and Zhu J 2014 J. Electrochem. Soc. 162 B16 | [26] | Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 | [27] | Fu L and Kane C L 2007 Phys. Rev. B 76 045302 | [28] | Weng H M, Dai X and Fang Z 2014 Phys. Rev. X 4 011002 | [29] | Sun Y, Felser C and Yan B H 2015 Phys. Rev. B 92 165421 | [30] | Zhou L J, Kou L Z, Sun Y, Felser C, Hu F M, Shan G C, Smith S C, Yan B H and Frauenheim T 2015 Nano Lett. 15 7867 | [31] | Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 | [32] | Grimme S 2006 J. Comput. Chem. 27 1787 | [33] | Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S et al 2008 Phys. Rev. Lett. 101 076402 | [34] | Wang Y L, Wang Z J, Fang Z and Dai X 2015 Phys. Rev. B 91 125139 | [35] | Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433 | [36] | Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Adv. Mater. 23 4248 | [37] | Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y and Barsoum M W 2012 ACS Nano 6 1322 | [38] | Yang J, Naguib M, Ghidiu M, Pan L M, Gu J, Nanda J, Halim J, Gogotsi Y, Barsoum M W and Zhou Y 2016 J. Am. Ceram. Soc. 99 660 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|