Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 078101    DOI: 10.1088/0256-307X/35/7/078101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition
Ze-Yang Ren, Jin-Feng Zhang**, Jin-Cheng Zhang**, Sheng-Rui Xu, Chun-Fu Zhang, Kai Su, Yao Li, Yue Hao
State Key Discipline Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
Ze-Yang Ren, Jin-Feng Zhang, Jin-Cheng Zhang et al  2018 Chin. Phys. Lett. 35 078101
Download: PDF(1567KB)   PDF(mobile)(1563KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Laterally enlarged single crystal diamond is grown on (001) diamond substrates by microwave plasma chemical vapor deposition. Based on the largest side-to-side width of the seed of 7.5 mm, we achieve the as-grown epilayer with the width of about 10 mm between the same two sides. The luminescence difference between the broadened part of the single crystal diamond and the vertically epitaxial part is investigated by characterizing the vertical cross section of the sample, and the possible growth mechanism is suggested. Vertical epitaxy on the top (001) surface and lateral growth on the side surfaces occur simultaneously, and thus the growth fronts along the two directions adjoin and form a coalescence zone extending from the edge of the substrate towards the edge of the expanded single crystal diamond top surface. The luminescence intensity of the nitrogen-vacancy center is relatively high in the coalescence zone and a laterally grown part right below, which are attributed mainly to the higher growth rate. However, stress change and crystal quality change are negligible near the coalescence zone.
Received: 07 March 2018      Published: 24 June 2018
PACS:  81.05.ug (Diamond)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/078101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/078101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ze-Yang Ren
Jin-Feng Zhang
Jin-Cheng Zhang
Sheng-Rui Xu
Chun-Fu Zhang
Kai Su
Yao Li
Yue Hao
[1]Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H G and Jia X P 2016 Chin. Phys. B 25 098101
[2]Isberg J, Hammersberg J, Johansson E, Wikstrom T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670
[3]Mokuno Y, Chayahara A, Yamada H and Tsubouchi N 2009 Diamond Relat. Mater. 18 1258
[4]Mokuno Y, Chayahara A, Yamada H and Tsubouchi N 2010 Diamond Relat. Mater. 19 128
[5]Charris A, Nad S and Asmussen J 2017 Diamond Relat. Mater. 76 58
[6]Nad S, Gu Y and Asmussen J 2015 Diamond Relat. Mater. 60 26
[7]Yamada H, Chayahara A, Mokuno Y, Tsubouchi N and Shikata S 2013 Diamond Relat. Mater. 33 27
[8]Yamada H, Chayahara A, Mokuno Y, Kato Y and Shikata S 2014 Appl. Phys. Lett. 104 102110
[9]Nad S and Asmussen J 2016 Diamond Relat. Mater. 66 36
[10]Wu G, Chen M H and Liao J 2016 Diamond Relat. Mater. 65 144
[11]Tallaire A, Achard J, Silva F, Brinza O and Gicquel A 2013 CR Phys. 14 169
[12]Silva F, Achard J, Bonnin X, Brinza O, Michau A, Secroun A, De Corte K, Felton S, Newton M and Gicquel A 2008 Diamond Relat. Mater. 17 1067
[13]Silva F, Achard J, Bonnin X, Michau A, Tallaire A, Brinza O and Gicquel A 2006 Phys. Status Solidi A 203 3049
[14]Yamada H, Chayahara A, Mokuno Y, Horino Y and Shikata S 2006 Diamond Relat. Mater. 15 1738
[15]Chayahara A, Mokuno Y, Horino Y, Takasu Y, Kato H, Yoshikawa H and Fujimori N 2004 Diamond Relat. Mater. 13 1954
[16]Li H D, Zou G T, Wang Q L, Cheng S H, Li B, Lue J N, Lue X Y and Jin Z S 2008 Chin. Phys. Lett. 25 1803
[17]Achard J, Silva F, Brinza O, Tallaire A and Gicquel A 2007 Diamond Relat. Mater. 16 685
[18]Tallaire A, Collins A T, Charles D, Achard J, Sussmann R, Gicquel A, Newton M E, Edmonds M and Cruddace R J 2006 Diamond Relat. Mater. 15 1700
Related articles from Frontiers Journals
[1] Linfeng Wan, Caoyuan Mu, Yaofeng Liu, Shaoheng Cheng, Qiliang Wang, Liuan Li, Hongdong Li, and Guangtian Zou. Structure and Wettability Engineering of Polycrystalline Diamond Films Treated by Thermally Oxidation, Second Growth and Surface Termination[J]. Chin. Phys. Lett., 2022, 39(3): 078101
[2] Kun Luo , Bing Liu , Lei Sun , Zhisheng Zhao, and Yongjun Tian . Design of a Class of New $sp^{2}$–$sp^{3}$ Carbons Constructed by Graphite and Diamond Building Blocks[J]. Chin. Phys. Lett., 2021, 38(2): 078101
[3] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates *[J]. Chin. Phys. Lett., 0, (): 078101
[4] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates[J]. Chin. Phys. Lett., 2020, 37(6): 078101
[5] Yan-Yan Shen, Yi-Xin Zhang, Ting Qi, Yu Qiao, Yu-Xin Jia, Hong-Jun Hei, Zhi-Yong He, Sheng-Wang Yu. Phase Transformation and Enhancing Electron Field Emission Properties in Microcrystalline Diamond Films Induced by Cu Ion Implantation and Rapid Annealing[J]. Chin. Phys. Lett., 2016, 33(08): 078101
[6] HU Xiao-Jun, LI Nian. Oxygen Ion Implantation Enhanced Silicon-Vacancy Photoluminescence and n-Type Conductivity of Ultrananocrystalline Diamond Films[J]. Chin. Phys. Lett., 2013, 30(8): 078101
[7] FAN Xiao-Hong,XU Bin**,NIU Zhen,ZHAI Tong-Guang,TIAN Bin. Fine Structural and Carbon Source Analysis for Diamond Crystal Growth using an Fe-Ni-C System at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(4): 078101
[8] YANG Yan-Ning, ZHANG Zhi-Yong**, ZHANG Fu-Chun, DONG Jun-Tang, ZHAO Wu, ZHAI Chun-Xue, ZHANG Wei-Hu. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds[J]. Chin. Phys. Lett., 2012, 29(1): 078101
[9] ZHANG Chun-Mei, ZHENG Yan-Bin, JIANG Zhi-Gang, LV Xian-Yi, HOU Xue, HU Shuang, LIU Jun-Wei. Effect of CO2 Addition on Preparation of Diamond Films by Direct-Current Hot-Cathode Plasma Chemical Vapor Deposition Method[J]. Chin. Phys. Lett., 2010, 27(8): 078101
[10] WANG Qi-Liang, LÜ, Xian-Yi, LI Liu-An, CHENG Shao-Heng, LI Hong-Dong. Growth and Characteristics of Freestanding Hemispherical Diamond Films by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2010, 27(4): 078101
Viewed
Full text


Abstract