Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 077301    DOI: 10.1088/0256-307X/35/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots
Chu-Hong Yang1,2, Shu-Yu Zheng1, Jie Fan1, Xiu-Nian Jing1,3, Zhong-Qing Ji1, Guang-Tong Liu1, Chang-Li Yang1,3**, Li Lu1,3
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Chu-Hong Yang, Shu-Yu Zheng, Jie Fan et al  2018 Chin. Phys. Lett. 35 077301
Download: PDF(1105KB)   PDF(mobile)(1095KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Triangular antidot lattices of various periods and aspect ratios are fabricated on high mobility GaAs/AlGaAs two-dimensional electron systems (2DESs), and are characterized by magneto-transport measurements at low temperatures down to 300 mK. Commensurability peaks are generally observed in the magneto-resistivity $\rho_{xx}$, and remarkable similarity between $d\rho_{xy}/dB$ and $\rho_{xx}$ is found. In samples of relatively large aspect ratio $d/a$, the Aharonov–Bohm-type oscillations are clearly observed in both $\rho_{xx}$ and $\rho_{xy}$, as well as the quenching of the Hall resistivity $\rho_{xy}$ in the vicinity of $B=0$. These observations evince the good quality of our samples, and attest to the adequate preparation for fabricating antidot lattices of a reduced period to realize artificial graphene from GaAs/AlGaAs 2DESs.
Received: 18 April 2018      Published: 24 June 2018
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.21.Cd (Superlattices)  
  73.61.Ey (III-V semiconductors)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Supported by the National Basic Research Program of China under Grant Nos 2015CB921101 and 2014CB920904, and the Strategic Priority Research Program B of Chinese Academy of Sciences under Grant No XDB07010200.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/077301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/077301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chu-Hong Yang
Shu-Yu Zheng
Jie Fan
Xiu-Nian Jing
Zhong-Qing Ji
Guang-Tong Liu
Chang-Li Yang
Li Lu
[1]Gerhardts R R, Weiss D and Klitzing K v 1989 Phys. Rev. Lett. 62 1173
[2]Winkler R W, Kotthaus J P and Ploog K 1989 Phys. Rev. Lett. 62 1177
[3]Weiss D, Roukes M L, Menschig A et al 1991 Phys. Rev. Lett. 66 2790
[4]Ensslin K and Petroff P M 1990 Phys. Rev. B 41 12307
[5]Albrecht C, Smet J H, Weiss D et al 1999 Phys. Rev. Lett. 83 2234
[6]Schuster R, Ensslin K, Kotthaus J P, Holl M and Stanley C 1993 Phys. Rev. B 47 6843
[7]Rychen J, Van$\check{c}$ura T, Heinzel T et al 1998 Phys. Rev. B 58 3568
[8]Yamashiro T, Takahara J, Takagaki Y et al 1991 Solid State Commun. 79 885
[9]Meckler S, Heinzel T, Cavanna A et al 2005 Phys. Rev. B 72 035319
[10]Yuan Z Q, Yang C L, Du R R et al 2006 Phys. Rev. B 74 075313
[11]Kato Y, Endo A, Katsumoto S and Iye Y 2012 Phys. Rev. B 86 235315
[12]Schuster R, Ernst G, Ensslin K et al 1994 Phys. Rev. B 50 8090
[13]Baskin E M, Gusev G M, Kvon Z D et al 1992 JETP Lett. 55 678
[14]Tsukagoshi K, Haraguchi M, Takaoka S and Murase K 1996 J. Phys. Soc. Jpn. 65 811
[15]Weiss D, Richter K, Menschig A et al 1993 Phys. Rev. Lett. 70 4118
[16]Nihey F, Hwang S W and Nakamura K 1995 Phys. Rev. B 51 4649
[17]Iye Y, Ueki M, Endo A and Katsumoto S 2004 J. Phys. Soc. Jpn. 73 3370
[18]Ueki M, Endo A, Katsumoto S and Iye Y 2004 Physica E 22 365
[19]Kato M, Tanaka H, Endo A et al 2006 Physica E 34 534
[20]Deutschmann R A, Wegscheider W, Rother M et al 2001 Phys. Rev. Lett. 86 1857
[21]Geisler M C, Smet J H, Umansky V et al 2004 Phys. Rev. Lett. 92 256801
[22]Polini M, Guinea F, Lewenstein M et al 2013 Nat. Nanotechnol. 8 625
[23]Park C H and Steven G L 2009 Nano Lett. 9 1793
[24]Gibertini M, Singha A, Pellegrini V et al 2009 Phys. Rev. B 79 241406
[25]Stormer H L, Baldwin K W, Pfeiffer L N and West K W 1992 Solid State Commun. 84 95
[26]Pan W, Xia J S, Stormer H L et al 2005 Phys. Rev. Lett. 95 066808
[27]Tsukagoshi K, Nagao T, Haraguchi M et al 1996 J. Phys. Soc. Jpn. 65 1914
[28]Fleischmann R, Geisel T and Ketzmerick R 1992 Phys. Rev. Lett. 68 1367
[29]Roukes M L, Scherer A, Allen S J et al 1987 Phys. Rev. Lett. 59 3011
[30]Ford C J B, Thornton T J, Newbury R et al 1988 Phys. Rev. B 38 8518
[31]Beenakker C W J and Houten H v 1988 Phys. Rev. Lett. 60 2406
[32]Beenakker C W J and Houten H v 1989 Phys. Rev. Lett. 63 1857
[33]Baranger H U and Stone A D 1989 Phys. Rev. Lett. 63 414
[34]Akera H and Ando T 1990 Phys. Rev. B 41 11967
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 077301
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 077301
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 077301
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 077301
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 077301
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 077301
[7] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 077301
[8] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 077301
[9] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 077301
[10] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 077301
[11] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 077301
[12] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 077301
[13] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 077301
[14] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 077301
[15] Rui-Fang Gao, Wen-Yong Su, Feng-Wang, Wan-Xiang Feng. Electron Transport Properties of Two-Dimensional Si$_{1}$P$_{1}$ Molecular Junctions[J]. Chin. Phys. Lett., 2017, 34(2): 077301
Viewed
Full text


Abstract