FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation |
Meng-Yan Zeng1,2,3,4, Yao Huang1,2,3, Hu Shao1,2,3,4, Miao Wang1,2,3,4, Hua-Qing Zhang1,2,3,4, Bao-Lin Zhang1,2,3,4, Hua Guan1,2,3, Ke-Lin Gao1,2,3** |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 3Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 4University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Meng-Yan Zeng, Yao Huang, Hu Shao et al 2018 Chin. Phys. Lett. 35 074202 |
|
|
Abstract Stability is one of most important performances of an atomic clock. Here we describe our recent work on improving the stability of our $^{40}$Ca$^{+}$ optical clock. State preparation is adopted to transfer the ion to the ground-state magnetic sublevel of the clock transition, after the quenching laser transfers the ion to the ground state at each cycle. Using this method, the stability for $^{40}$Ca$^{+}$ optical clock is improved to about $6.3\times 10^{-15}/\sqrt\tau$. Compared with $1.0\times 10^{-14}/\sqrt \tau$ in previous work, the averaging time is decreased to reach a given level of statistical uncertainty in a clock comparison.
|
|
Received: 26 March 2018
Published: 24 June 2018
|
|
PACS: |
42.62.Fi
|
(Laser spectroscopy)
|
|
37.10.Ty
|
(Ion trapping)
|
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
|
Fund: Supported by the National Key R&D Program of China under Grant No 2017YFA0304401, the National Natural Science Foundation of China under Grant Nos 91336211, 11634013, 11474318 and 11622434, the Strategic Priority Research Program B of Chinese Academy of Sciences under Grant No XDB21030100, the Hubei Provincial Science Fund for Distinguished Young Scholars under Grant No 2017CFA040, and the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2015274. |
|
|
[1] | Chou C W, Hume D B, Koelemeij J C J et al 2010 Phys. Rev. Lett. 104 070802 | [2] | Madej A A, Dube P, Zhou Z et al 2012 Phys. Rev. Lett. 109 203002 | [3] | Barwood G P, Huang G, Klein H A et al 2014 Phys. Rev. A 89 050501 | [4] | Huntemann N, Okhapkin M, Lipphardt B et al 2012 Phys. Rev. Lett. 108 090801 | [5] | King S A, Godun R M, Webster S A et al 2012 New J. Phys. 14 013045 | [6] | Bloom B J, Nicholson T L, Williams J R et al 2014 Nature 506 71 | [7] | Nicholson T L, Campbell S L, Hutson R B et al 2015 Nat. Commun. 6 6896 | [8] | Ushijima I, Takamoto M, Das M et al 2015 Nat. Photon. 9 185 | [9] | Falke S, Lemke N, Grebing C et al 2014 New J. Phys. 16 073023 | [10] | Targat R Le, Lorini L, Coq Y Le et al 2013 Nat. Commun. 4 2109 | [11] | McFerran J J, Yi L, Mejri S et al 2014 Phys. Rev. A 89 043432 | [12] | Hinkley N, Sherman J A, Phillips N B et al 2013 Science 341 1215 | [13] | Beloy K, Hinkley N, Phillips N B et al 2014 Phys. Rev. Lett. 113 260801 | [14] | Li R, Gibble K and Szymaniec K 2011 Metrologia 48 283 | [15] | Weyers S, Gerginov V, Nemitz N et al 2012 Metrologia 49 82 | [16] | Rosenb, T, Hume D B, Schmidt P O et al 2008 Science 319 1808 | [17] | Huntemann N, Sanner C, Lipphardt B et al 2016 Phys. Rev. Lett. 116 063001 | [18] | Huang Y, Guan H, Liu P et al 2016 Phys. Rev. Lett. 116 013001 | [19] | Matsubara K, Hachisu H, Li Y et al 2012 Opt. Express 20 22034 | [20] | Sherman J A, Koerber T W, Markhotok A et al 2005 Phys. Rev. Lett. 94 243001 | [21] | Hayasaka K 2012 Appl. Phys. B 107 965 | [22] | Berkel, D J, Miller J D, Bergquist J C et al 1998 J. Appl. Phys. 83 5025 | [23] | Barton P A, Donald C J S, Lucas D M et al 2000 Phys. Rev. A 62 032503 | [24] | Dubé P, Madej A A, Zhou Z et al 2013 Phys. Rev. A 87 023806 | [25] | Huang Y, Liu Q, Cao J et al 2011 Phys. Rev. A 84 053841 | [26] | Huang Y, Cao J, Liu P et al 2012 Phys. Rev. A 85 030503 | [27] | Huang Y, Liu P, Bian W et al 2014 Appl. Phys. B 114 189 | [28] | Schneider T, Peik E and Tamm C 2005 Phys. Rev. Lett. 94 230801 | [29] | Ludlow A D, Zelevinsky T, Zawada M et al 2008 Science 319 1805 | [30] | Campbell S L, Hutson R B, Marti G E et al 2017 Science 358 90 | [31] | Chwalla M, Benhelm J, Kim K et al 2009 Phys. Rev. Lett. 102 023002 | [32] | Champenois C, Houssin M, Lisowski C et al 2004 Phys. Lett. A 331 298 | [33] | Keller J, Burgermeister T, Kalincev D et al 2016 J. Phys.: Conf. Ser. 723 012027 | [34] | Tamm C, Engelke D, Buhner V et al 2000 Phys. Rev. A 61 053405 | [35] | Roos C F, Chwalla M, Kim K et al 2006 Nature 443 316 | [36] | Barwood G P, Gill P, Huang G et al 2012 Meas. Sci. Technol. 23 055201 | [37] | Schmidt P O, Rosenb, T, Langer C et al 2005 Science 309 749 | [38] | Dube P, Madej A A, Shiner A et al 2015 Phys. Rev. A 92 042119 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|