Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 074203    DOI: 10.1088/0256-307X/35/7/074203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface
Kang-Bo Tan**, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen
National Key Laboratory of Science and Technology on Antennas and Microwaves, Xidian University, Xi'an 710071
Cite this article:   
Kang-Bo Tan, Hong-Min Lu, Qiao Guan et al  2018 Chin. Phys. Lett. 35 074203
Download: PDF(6678KB)   PDF(mobile)(6675KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on Fermat's principle and the special relativity, the transmission of high-frequency electromagnetics is unified by variational formulation on the moving interface. Applying the theoretical model, we investigate the detailed practices of transmission of high-frequency electromagnetic under relativistic conditions. The deduced results illustrate that the effective estimation of the super high-speed effect on a moving interface supports the valuable frame of reference in controlling precision. The results also show that the theoretical model has potential applications in electromagnetically controlled precision in the quantum information, ray sensor, controllable environment, etc.
Received: 30 March 2018      Published: 24 June 2018
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.-k (Nonlinear optics)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/074203       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/074203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kang-Bo Tan
Hong-Min Lu
Qiao Guan
Guang-Shuo Zhang
Chong-Chong Chen
[1]Harris S E 1997 Phys. Today 50 36
[2]Chen F F 2006 Introduction to Plasma Physics and Controlled Fusion (New York: Springer)
[3]Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[4]Rose H A and Mounaix P 2011 Phys. Plasmas 18 042109
[5]Kitzler M and Gräfe S 2016 Ultrafast Dynamics Driven By Intense Light Pulses (London: Springer) chap 7 p 161 and chap 12 p 295
[6]Xu Z X, Li S L, Yin X X, Zhao H X and Liu L L 2017 Sci. Rep. 7 6098
[7]Totsuka K, Kobayashi N and Tomita M 2007 Phys. Rev. Lett. 98 213904
[8]Hüller S, Porzio A and Robiche J 2013 New J. Phys. 15 025003
[9]Burak K K and Deborah A L 2017 J. Propul. Power 33 264
[10]Liu J S and Zhang D Y 2001 Acta Phys. Sin. 50 880 (in Chinese)
[11]Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F and Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese)
[12]Qi X Y, Cao Z and Bai J T 2013 Acta Phys. Sin. 62 064217 (in Chinese)
[13]Zhang L S, Yang L J, Li X L, Han L, Li X W, Guo Q L and Fu G S 2007 Acta Opt. Sin. 07 1305 (in Chinese)
[14]Wang L and Hu X M 2004 Acta Phys. Sin. 53 2551 (in Chinese)
[15]Li X L, Shang Y X and Sun J 2013 Acta Phys. Sin. 62 064202 (in Chinese)
[16]Tang H, Wang D L, Zhang W X, Ding J W and Xiao S G 2017 Acta Phys. Sin. 66 034202 (in Chinese)
[17]Zhu K Z, Jia W G, Zhang K, Yu Y and Zhang J P 2016 Acta Phys. Sin. 65 074204 (in Chinese)
[18]Du Y J, Xie X T, Yang Z Y and Bai J T 2015 Acta Phys. Sin. 64 064202 (in Chinese)
[19]Gelmecha D, Li J Q and Teklu M 2016 Chin. Phys. Lett. 33 094202
[20]Wei H F, Chen S P, Hou J, Chen K K and Li J Y 2016 Chin. Phys. Lett. 33 064202
[21]Tiu Z C, Zarei A, Tan S J, Ahmad H and Harun S W 2015 Chin. Phys. Lett. 32 034203
[22]Yan W, Wang T and Li X M 2013 Chin. Phys. Lett. 30 027802
[23]Huang B C and Tong J Y 2010 Space Environment Engineering (Beijing: Chinese Science and Technology Press) chap 1 p 1 (in Chinese)
[24]Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and Zukowski M 2012 Rev. Mod. Phys. 84 777
[25]Bao W M 2013 Aerosp. Control 31 4 (in Chinese)
[26]Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill) chap 3 p 160
[27]Jackson J D 1975 Classical Electrodynamics (New York: Wiley) chap 12 p 571
[28]Kong J A 1986 Electromagnetic Wave Theory (New York: Wiley) chap 7 p 577
[29]Liang C H and Chu Q X 2002 Acta Phys. Sin. 51 2202 (in Chinese)
[30]Born M and Wolf E 1959 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (London: Pergamon Press) chap 3 p 108
[31]Wang Y P, Chen D Z and Liu P C 1985 Electrodynamics in Engineering (Xi'an: Northwest Telecommunication Institute) chap 4 p 135 (in Chinese)
[32]Berryman J G 1989 Phys. Rev. Lett. 62 2953
[33]Guo H and Deng X M 1995 Sci. Chin. Ser. A 25 273 (in Chinese)
[34]Gjurchinovski A and Skeparovski A 2007 Eur. J. Phys. 28 933
[35]Tan K B and Liang C H 2009 Acta Phys. Sin. 58 6770 (in Chinese)
[36]Godin O A and Voronovich A G 2004 Proc. R. Soc. Lond. A 460 1631
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 074203
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 074203
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 074203
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 074203
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 074203
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 074203
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 074203
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 074203
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 074203
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 074203
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 074203
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 074203
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 074203
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 074203
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 074203
Viewed
Full text


Abstract