GENERAL |
|
|
|
|
Ultra-High Sensitivity Viscometer Based on a Torsion Pendulum |
Xiao-Guang Ma1,5, Lan Chen1**, Hai-Yan Wang2, Jin-Xiu Zhang1,3, Xiao-Min Xiong1,3,4** |
1School of Physics, Sun Yat-Sen University, Guangzhou 510275 2School of Information Technology, Guangdong Industry Polytechnic, Guangdong 510300 3State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou 510275 4Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Guangzhou 510006 5Department of Physics, Hong Kong University of Science and Technology, Hong Kong
|
|
Cite this article: |
Xiao-Guang Ma, Lan Chen, Hai-Yan Wang et al 2018 Chin. Phys. Lett. 35 060601 |
|
|
Abstract Based on a conventional torsion pendulum, we develop a forced oscillation viscometer with ultra-high viscosity sensitivity of $2\times10^{-7}$ Pa$\cdot$s working at frequencies near the resonance. The viscosity is achieved by exploiting the phase lag for the angle displacement behind the torque, instead of the resonant curve, i.e., the variation of angle displacement amplitude versus frequency. The general formula for the measurement of the visco-elasticity of complex fluids is also presented. With such precision it is easy to measure tiny change in viscosity result from circumstantial influences. Deionized water and two kinds of NaCl aqueous solutions are chosen to demonstrate the performance of our home-made torsion pendulum-based viscometer.
|
|
Received: 09 February 2018
Published: 19 May 2018
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 10974259, 11274391 and 11104357, the Science and Technology Planning Project of Guangdong Province under Grant No 2012B060100003, and the Fundamental Research Funds for the Central Universities under Grant Nos 121gpy36 and 09lgpy29. |
|
|
[1] | Brizard M, Megharfi M, Mahe E and Verdier C 2005 Rev. Sci. Instrum. 76 025109 | [2] | Ostwald W and Auerbach R 1927 Zur Megmethodik Viskosimetrie Bei Variabler Fliefifleschwindigkeit Und Fiber Ein Neues Viskosimeter Kolloid-Z. 41 56 | [3] | Berli C L A and Deiber J A 2004 Rev. Sci. Instrum. 75 976 | [4] | Green H 1949 Industrial Rheology and Rheological Structures (London: Wiley) | [5] | Ferry J D 1970 Viscoelastic Properties Polymers 2nd edn (New York: Wiley) | [6] | Leyh C and Ritter R C 1984 Rev. Sci. Instrum. 55 570 | [7] | Jimenez J A and Kostic M 1994 Rev. Sci. Instrum. 65 229 | [8] | Cho Y I, Kim W T and Kensey K R 1999 Rev. Sci. Instrum. 70 2421 | [9] | Ahmed N, Nino D F and Moy V T 2001 Rev. Sci. Instrum. 72 2731 | [10] | Pesce G, Sasso A and Fusco S 2005 Rev. Sci. Instrum. 76 115105 | [11] | Schrag J L and Johnson R M 1971 Rev. Sci. Instrum. 42 224 | [12] | Stokich T M, Radtke D R, White C C and Schrag J L 1994 J. Rheol. 38 1195 | [13] | Hong X G and Lu K Q 1995 Rev. Sci. Instrum. 66 4318 | [14] | Fritz G, Pechhold W, Willenbacher N and Wagner N J 2003 J. Rheol. 47 303 | [15] | Ding X D, Xiong X M et al 2001 Acta Scientiarum Naturalium Universitatis Sunyatseni 40 291 (in Chinese) | [16] | Ferry J D 1980 Viscoelastic Properties Polymers 3rd edn (New York: Wiley) | [17] | Kestin J, Khalifa H E and Correia R J 1981 J. Phys. Chem. Ref. Data 10 71 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|