Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 060301    DOI: 10.1088/0256-307X/35/6/060301
GENERAL |
Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process
Jun Wen1,2, Guan-Qiang Li3,4**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2University of the Chinese Academy of Sciences, Beijing 100049
3School of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an 710021
4Department of Applied Physics and Key Laboratory for Quantum Information and Quantum Optoelectronic Devices of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
Jun Wen, Guan-Qiang Li 2018 Chin. Phys. Lett. 35 060301
Download: PDF(539KB)   PDF(mobile)(533KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Coherence is a key resource in quantum information science. Exactly understanding and controlling the variation of coherence are vital for implementation in realistic quantum systems. Using $P$-representation of density matrix, we obtain the analytical solution of the master equation for the classical states in the non-Markovian process and investigate the coherent dynamics of Gaussian states. It is found that quantum coherence can be preserved in such a process if the coupling strength between system and environment exceeds a threshold value. We also discuss the characteristic function of the Gaussian states in the non-Markovian process, which provides an inevitable bridge for the control and operation of quantum coherence.
Received: 08 December 2017      Published: 19 May 2018
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Xp (Tunneling, traversal time, quantum Zeno dynamics)  
  42.25.Kb (Coherence)  
  42.50.Ar  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11405100, 11404377 and 11674360, the Natural Science Basic Research Plan of Shaanxi Province of China under Grant No 2015JM1032, and the Doctoral Research Fund of Shaanxi University of Science and Technology of China under Grant No 2018BJ-02.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/060301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/060301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Wen
Guan-Qiang Li
[1]Girolami D 2014 Phys. Rev. Lett. 113 170401
[2]Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[3]Shao L H, Xi Z, Fan H and Li Y 2015 Phys. Rev. A 91 042120
[4]Du S, Bai Z and Guo Y 2015 Phys. Rev. A 91 052120
[5]Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[6]Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[7]Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[8]Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329
[9]Zhang Y R, Shao L H, Li Y M and Fan H 2016 Phys. Rev. A 93 012334
[10]Xu J 2016 Phys. Rev. A 93 032111
[11]Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[12]Ali M M, Lo P Y, Tu M W and Zhang W M 2015 Phys. Rev. A 92 062306
[13]Tan H T and Zhang W M 2011 Phys. Rev. A 83 032102
[14]Alipour S, Mehboudi M and Rezakhani A T 2014 Phys. Rev. Lett. 112 120405
[15]Zhang W M, Lo P Y, Xiong H N, Tu M W and Nori F 2012 Phys. Rev. Lett. 109 170402
[16]Torre G, Roga W and Illuminati F 2015 Phys. Rev. Lett. 115 070401
[17]Anderson P W 1961 Phys. Rev. 124 41
[18]Fano U 1961 Phys. Rev. 124 1866
[19]Cai C Y, Yang L P and Sun C P 2014 Phys. Rev. A 89 012128
[20]Caldeira A O and Legget A J 1983 Ann. Phys. (N. Y.) 149 374
[21]Tu M W and Zhang W M 2008 Phys. Rev. A 78 235311
[22]Jin J S, Tu M W, Zhang W M and Yan Y J 2010 New J. Phys. 12 083013
[23]Schwinger J 1961 J. Math. Phys. (N. Y.) 2 407
[24]Kadanoff L P and Baym G 1962 Quantum Statistical Mechanics (New York: Benjamin)
[25]Scully M O and Zubairy M S 2012 Quantum Optics (Cambridge: Cambridge University) vol 2
[26]Carmichael H J 2002 Statistical Methods in Quantum Optical (Berlin: Springer) vol 1
[27]Carmichael H J, Brecha R J, Raizen M G, Kimble H J and Rice P R 1989 Phys. Rev. A 40 5516
[28]Weedbrook C, Pirandola S, Garcia-PatrÓn R, Cerf N J, Ralph T C, Shapior J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[29]Holevo A S, Sohma M and Hirota O 1999 Phys. Rev. A 59 1820
[30]Olivares S 2012 Eur. Phys. J. ST 203 3
[31]Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 060301
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 060301
[3] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 060301
[4] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 060301
[5] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 060301
[6] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 060301
[7] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 060301
[8] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 060301
[9] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 060301
[10] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 060301
[11] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 060301
[12] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 060301
[13] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 060301
[14] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 060301
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 060301
Viewed
Full text


Abstract