GENERAL |
|
|
|
|
Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process |
Jun Wen1,2, Guan-Qiang Li3,4** |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2University of the Chinese Academy of Sciences, Beijing 100049 3School of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an 710021 4Department of Applied Physics and Key Laboratory for Quantum Information and Quantum Optoelectronic Devices of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049
|
|
Cite this article: |
Jun Wen, Guan-Qiang Li 2018 Chin. Phys. Lett. 35 060301 |
|
|
Abstract Coherence is a key resource in quantum information science. Exactly understanding and controlling the variation of coherence are vital for implementation in realistic quantum systems. Using $P$-representation of density matrix, we obtain the analytical solution of the master equation for the classical states in the non-Markovian process and investigate the coherent dynamics of Gaussian states. It is found that quantum coherence can be preserved in such a process if the coupling strength between system and environment exceeds a threshold value. We also discuss the characteristic function of the Gaussian states in the non-Markovian process, which provides an inevitable bridge for the control and operation of quantum coherence.
|
|
Received: 08 December 2017
Published: 19 May 2018
|
|
PACS: |
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Xp
|
(Tunneling, traversal time, quantum Zeno dynamics)
|
|
42.25.Kb
|
(Coherence)
|
|
42.50.Ar
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11405100, 11404377 and 11674360, the Natural Science Basic Research Plan of Shaanxi Province of China under Grant No 2015JM1032, and the Doctoral Research Fund of Shaanxi University of Science and Technology of China under Grant No 2018BJ-02. |
|
|
[1] | Girolami D 2014 Phys. Rev. Lett. 113 170401 | [2] | Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 | [3] | Shao L H, Xi Z, Fan H and Li Y 2015 Phys. Rev. A 91 042120 | [4] | Du S, Bai Z and Guo Y 2015 Phys. Rev. A 91 052120 | [5] | Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401 | [6] | Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112 | [7] | Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 | [8] | Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329 | [9] | Zhang Y R, Shao L H, Li Y M and Fan H 2016 Phys. Rev. A 93 012334 | [10] | Xu J 2016 Phys. Rev. A 93 032111 | [11] | Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401 | [12] | Ali M M, Lo P Y, Tu M W and Zhang W M 2015 Phys. Rev. A 92 062306 | [13] | Tan H T and Zhang W M 2011 Phys. Rev. A 83 032102 | [14] | Alipour S, Mehboudi M and Rezakhani A T 2014 Phys. Rev. Lett. 112 120405 | [15] | Zhang W M, Lo P Y, Xiong H N, Tu M W and Nori F 2012 Phys. Rev. Lett. 109 170402 | [16] | Torre G, Roga W and Illuminati F 2015 Phys. Rev. Lett. 115 070401 | [17] | Anderson P W 1961 Phys. Rev. 124 41 | [18] | Fano U 1961 Phys. Rev. 124 1866 | [19] | Cai C Y, Yang L P and Sun C P 2014 Phys. Rev. A 89 012128 | [20] | Caldeira A O and Legget A J 1983 Ann. Phys. (N. Y.) 149 374 | [21] | Tu M W and Zhang W M 2008 Phys. Rev. A 78 235311 | [22] | Jin J S, Tu M W, Zhang W M and Yan Y J 2010 New J. Phys. 12 083013 | [23] | Schwinger J 1961 J. Math. Phys. (N. Y.) 2 407 | [24] | Kadanoff L P and Baym G 1962 Quantum Statistical Mechanics (New York: Benjamin) | [25] | Scully M O and Zubairy M S 2012 Quantum Optics (Cambridge: Cambridge University) vol 2 | [26] | Carmichael H J 2002 Statistical Methods in Quantum Optical (Berlin: Springer) vol 1 | [27] | Carmichael H J, Brecha R J, Raizen M G, Kimble H J and Rice P R 1989 Phys. Rev. A 40 5516 | [28] | Weedbrook C, Pirandola S, Garcia-PatrÓn R, Cerf N J, Ralph T C, Shapior J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 | [29] | Holevo A S, Sohma M and Hirota O 1999 Phys. Rev. A 59 1820 | [30] | Olivares S 2012 Eur. Phys. J. ST 203 3 | [31] | Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|