CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Improvement of Operation Characteristics for MONOS Charge Trapping Flash Memory with SiGe Buried Channel |
Zhao-Zhao Hou1,2, Gui-Lei Wang1,2, Jia-Xin Yao1,2, Qing-Zhu Zhang1, Hua-Xiang Yin1,2** |
1Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Zhao-Zhao Hou, Gui-Lei Wang, Jia-Xin Yao et al 2018 Chin. Phys. Lett. 35 057302 |
|
|
Abstract We propose and investigate a novel metal/SiO$_{2}$/Si$_{3}$N$_{4}$/SiO$_{2}$/SiGe charge trapping flash memory structure (named as MONOS), utilizing SiGe as the buried channel. The fabricated memory device demonstrates excellent program-erasable characteristics attributed to the fact that more carriers are generated by the smaller bandgap of SiGe during program/erase operations. A flat-band voltage shift 2.8 V can be obtained by programming at +11 V for 100 μs. Meanwhile, the memory device exhibits a large memory window of $\sim$7.17 V under $\pm$12 V sweeping voltage, and a negligible charge loss of 18% after 10$^{4}$ s' retention. In addition, the leakage current density is lower than $2.52\times10^{-7}$ A$\cdot$cm$^{-2}$ below a gate breakdown voltage of 12.5 V. Investigation of leakage current-voltage indicates that the Schottky emission is the predominant conduction mechanisms for leakage current. These desirable characteristics are ascribed to the higher trap density of the Si$_{3}$N$_{4}$ charge trapping layer and the better quality of the interface between the SiO$_{2}$ tunneling layer and the SiGe buried channel. Therefore, the application of the SiGe buried channel is very promising to construct 3D charge trapping NAND flash devices with improved operation characteristics.
|
|
Received: 01 February 2018
Published: 30 April 2018
|
|
PACS: |
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
77.55.dj
|
(For nonsilicon electronics (Ge, III-V, II-VI, organic electronics))
|
|
77.55.Px
|
(Epitaxial and superlattice films)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
|
Fund: Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02303007, the National Key Research and Development Program of China under Grant No 2016YFA0301701, and the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2016112. |
|
|
[1] | Arreghini A, Delhougne R, Subirats A et al 2017 Proc. IEEE IMW p 115 | [2] | Ji H, Wei Y, Ma P and Jiang R 2018 IEEE J. Electron. Devices Soc. 6 81 | [3] | Tang Z, Zhu X, Xu H et al 2013 Mater. Lett. 92 21 | [4] | Lee D U et al 2012 Appl. Phys. Lett. 100 072901 | [5] | Hou Z, Wang G, Xiang J et al 2017 Chin. Phys. Lett. 34 097304 | [6] | Liu L J, Chang-Liao K S, Keng W C et al 2010 Solid-State Electron. 54 1113 | [7] | Lin Y H and Chien C H 2013 Solid-State Electron. 80 5 | [8] | Chen C Y, Chang-Liao K S, Liu L J et al 2014 IEEE Electron Device Lett. 35 1025 | [9] | Liu L J, Chang-Liao K S, Jian Y C et al 2012 IEEE Electron Device Lett. 33 1264 | [10] | Wang G, Luo J, Qin C et al 2017 Nanoscale Res. Lett. 12 123 | [11] | Shen Y S, Chen K Y, Chen P C et al 2017 Sci. Rep. 7 43659 | [12] | Maikap S, Lee H Y, Wang T Y et al 2007 Semicond. Sci. Technol. 22 884 | [13] | Cao D, Cheng X, Jia T et al 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 307 463 | [14] | Jung M H, Kim K S, Park G H et al 2009 Appl. Phys. Lett. 94 053508 | [15] | Xu W, Zhang Y, Tang Z et al 2017 Nanoscale Res. Lett. 12 270 | [16] | Yan X, Yang T, Jia X et al 2017 Phys. Lett. A 381 913 | [17] | Qiu X Y, Zhou G D, Li J et al 2014 Thin Solid Films 562 674 | [18] | Altuntas H, Ozgit-Akgun C, Donmez I et al 2015 J. Appl. Phys. 117 155101 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|