CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Crystallization Process of Superlattice-Like Sb/SiO$_{2}$ Thin Films for Phase Change Memory Application |
Xiao-Qin Zhu1, Rui Zhang1, Yi-Feng Hu1,3,4**, Tian-Shu Lai2, Jian-Hao Zhang1, Hua Zou1, Zhi-Tang Song5 |
1School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001 2State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275 3State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 4Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 5State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System and Information Technology, Chinese Academy of Sciences, Shanghai 200050
|
|
Cite this article: |
Xiao-Qin Zhu, Rui Zhang, Yi-Feng Hu et al 2018 Chin. Phys. Lett. 35 056803 |
|
|
Abstract After compositing with SiO$_{2}$ layers, it is shown that superlattice-like Sb/SiO$_{2}$ thin films have higher crystallization temperature ($\sim240^{\circ}\!$C), larger crystallization activation energy (6.22 eV), and better data retention ability (189$^{\circ}\!$C for 10 y). The crystallization of Sb in superlattice-like Sb/SiO$_{2}$thin films is restrained by the multilayer interfaces. The reversible resistance transition can be achieved by an electric pulse as short as 8 ns for the Sb(3 nm)/SiO$_{2}$(7 nm)-based phase change memory cell. A lower operation power consumption of 0.09 mW and a good endurance of $3.0\times10^{6}$ cycles are achieved. In addition, the superlattice-like Sb(3 nm)/SiO$_{2}$(7 nm) thin film shows a low thermal conductivity of 0.13 W/(m$\cdot$K).
|
|
Received: 27 November 2017
Published: 30 April 2018
|
|
PACS: |
68.05.Cf
|
(Liquid-liquid interface structure: measurements and simulations)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11774438, the Natural Science Foundation of Jiangsu Province under Grant No BK20151172, the Changzhou Science and Technology Bureau under Grant No CJ20160028, the Qing Lan Project, the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04, and the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences. |
|
|
[1] | Szkutnik P D, Aoukar M, Todorova V, Angelides L, Pelissier B, Jourde D, Michallon P, Vallee C and Noe P 2017 J. Appl. Phys. 121 105301 | [2] | Zhu Y Q, Zhang Z H, Song S N, Xie H Q, Song Z T, Shen L L, Li L, Wu L C and Liu B 2015 Chin. Phys. Lett. 32 077302 | [3] | Lu Y G, Stegmaier M, Nukala P, Giambra M A, Ferrari S, Busacca A, Pernice W H P and Agarwal R 2017 Nano Lett. 17 150 | [4] | Xia M J, Rao F, Song Z T, Ren K, Wu L C, Liu B and Feng S L 2013 Chin. Phys. Lett. 30 037401 | [5] | Zhu C Q, Ma J, Ge. X M, Rao F, Ding K Y, Lv S L, Wu L C and Song Z T 2016 Appl. Phys. Lett. 108 252102 | [6] | Mathias S, Hans W, Pál J, Yoshimi T, Tristan G A Y, Ivan K and Riccardo M 2016 Sci. Rep. 6 27434 | [7] | Wang Q, Liu B, Xia Y, Zheng Y, Huo R, Zhang Q, Song S, Cheng Y, Song Z T and Feng S 2015 Appl. Phys. Lett. 107 222101 | [8] | Hu Y F, Zou H, Zhang J H, Xue J Z, Sui Y X, Wu W H, Yuan L, Zhu X Q, Song S N and Song Z T 2015 Appl. Phys. Lett. 107 263105 | [9] | Kim N H, Kim H K, Lee K M, Sohn H C, Roh J S and Choi D J 2011 Thin Solid Films 519 5323 | [10] | He Z F, Wu P Z, Liu R R, Zhai J W, Lai T S, Song S N and Song Z T 2016 CrystEngComm 18 1230 | [11] | Lu Y G, Song S N, Song Z T, Ren F, Wu L C, Zhu M, Liu B and Yao D N 2012 Appl. Phys. Lett. 100 193114 | [12] | Zhu W L, Wen T, Hu Y F, Liu X Y, Gu D, Lai T S and Zhai J W 2017 J. Alloys Compd. 723 936 | [13] | Loke D, Shi L P, Wang W J, Zhao R, Yang H X et al 2011 Nanotechnology 22 254019 | [14] | Sandhu S, Kumar S, and Thangaraj R 2017 Phase Transit. 90 1013 | [15] | Podpirka A, Lee W K, Ziegler J I, Brintlinger T H, Felts J R, Simpkins B S, Bassim N D, Laracuente A R, Sheehan P E and Ruppalt L B 2017 Nanoscale 9 8815 | [16] | Guo T Q, Song S N, Li L, Ji X L, Li C, Xu C, Shen L L, Xue Y, Liu B, Song Z T, Qi M and Feng S L 2017 Scr. Mater. 129 56 | [17] | Hu Y F, Zhu X Q, Zou H, Zhang J H, Yuan L, Xue J Z, Sui Y X, Wu W H, Song S N and Song Z T 2016 Appl. Phys. Lett. 108 223103 | [18] | Rao F, Song Z T, Cheng Y, Xia M J, Ren K, Wu L C, Liu B and Feng S L 2012 Acta Mater. 60 323 | [19] | Luo Y, Wang G X, Liu P, Wang Z L, Wang J X and Gu T 2017 Vacuum 141 188 | [20] | Ji X L, Wu L C, Zhu M, Rao F, Song Z T, Hu Z G, Guo S, Xu L, Zhou X L and Feng S L 2015 RSC Adv. 5 24966 | [21] | Hu Y F, Li S M, Lai T S, Song S N, Song Z T and Zhai J W 2013 Scr. Mater. 69 61 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|