CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Improvement of Nickel-Stanogermanide Contact Properties by Platinum Interlayer |
Wei-Jun Wan1,2, Wei Ren1**, Xiao-Ran Meng2,3, Yun-Xia Ping3, Xing Wei2, Zhong-Ying Xue2, Wen-Jie Yu2, Miao Zhang2, Zeng-Feng Di2, Bo Zhang2** |
1Physics Department, Materials Genome Institute, and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai 200444 2State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 3School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201600
|
|
Cite this article: |
Wei-Jun Wan, Wei Ren, Xiao-Ran Meng et al 2018 Chin. Phys. Lett. 35 056802 |
|
|
Abstract We report an effective method to improve the formation of nickel stanogermanide (NiGeSn) by the incorporation of a platinum (Pt) interlayer. After the Ni/Pt/GeSn samples are annealed we obtain uniform NiGeSn thin films, which are characterized by means of sheet resistance, atomic force microscopy, scanning electron microscopy, cross-section transmission electron microscopy, and energy dispersive x-ray spectroscopy. These results show that the presence of Pt increases the smoothness and uniform morphology of NiGeSn films.
|
|
Received: 25 December 2017
Published: 30 April 2018
|
|
PACS: |
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
68.35.Ct
|
(Interface structure and roughness)
|
|
68.55.J-
|
(Morphology of films)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51672171 and 61604094, the Natural Science Foundation of Shanghai under Grant No 14ZR1418300, the National Key Basic Research Program of China under Grant No 2015CB921600, the Eastern Scholar Program from the Shanghai Municipal Education Commission, and the Fok Ying Tung Education Foundation. |
|
|
[1] | Wirths S, Tiedemann A T, Ikonic Z, Harrison P, Holländer B, Stoica T, Mussler G, Myronov M, Hartmann J M, Grützmacher D, Buca D and Mantl S 2013 Appl. Phys. Lett. 102 192103 | [2] | Guo P F, Han G Q, Gong X, Liu B, Yang Y, Wang W, Zhou Q, Pan J S, Zhang Z, Tok E S and Yeo Y C 2013 J. Appl. Phys. 114 044510 | [3] | Schulte-Braucks C, Glass S, Hofmann E, Stange D, Driesch N, Hartmann J M, Ikonic Z, Zhao Q T, Buca D and Mantl S 2017 Solid-State Electron. 128 54 | [4] | Schulze J, Blech A, Datta A, Fischer I A, Hähnel D, Naasz S, Rolseth E and Tropper E M 2015 Solid-State Electron. 110 59 | [5] | Schulte-Braucks C, Stange D, Driesch N, Blaeser S, Ikonic Z, Hartmann J M, Mantl S and Buca D 2015 Appl. Phys. Lett. 107 042101 | [6] | Gong X, Han G Q, Bai F, Su S J, Guo P F, Yang Y, Cheng R, Zhang D L, Zhang G Z, Xue C L, Cheng B W, Pan J S, Zhang Z, Tok E S, Antoniadis D and Yeo Y C 2013 IEEE Electron Device Lett. 34 339 | [7] | Han G Q, Su S J, Wang L X, Wang W, Gong X, Yang Y, Ivana, Guo P F, Guo C, Zhang G Z, Pan J S, Zhang Z, Xue C L, Cheng B W and Yeo Y C 2012 Symp. VLSI Technol. (VLSIT) 34 97 | [8] | Liu Q B, Wang G L, Guo Y L, Ke X X, Radamson H, Liu H, Zhao C and Luo J 2015 ECS J. Solid State Sci. Technol. 4 P67 | [9] | Nakatsuka O, Tsutsui N, Shimura Y, Takeuchi S, Sakai A and Zaima S 2010 Jpn. J. Appl. Phys. 49 04DA10 | [10] | Takeuchi S, Shimura Y, Nishimura T, Vincent B, Eneman G, Clarysse T, Demeulemeester J, Vantomme A, Dekoster J, Caymax M, Loo R, Sakai A, Nakatsuka O and Zaima S 2011 Solid-State Electron. 60 53 | [11] | Han G Q, Su S J, Zhou Q, Guo P F, Yang Y, Zhan C L, Wang L X, Wang W, Wang Q M, Xue C L, Cheng B W and Yeo Y C 2012 IEEE Electron Device Lett. 33 634 | [12] | Meng X R, Ping Y X, Chang Y W, Wei X, Yu W J, Xue Z Y, Di Z F, Zhang M and Zhang B 2015 J. Funct. Mater. Device. 21 85 | [13] | Liu Y, Wang H J, Yan J and Han G Q 2014 ECS Solid State Lett. 3 P11 | [14] | Nishimura T, Nakatsuka O, Shimura Y, Takeuchi S, Vincent B, Vantomme A, Dekoster J, Caymax M, Loo R and Zaima S 2011 Solid-State Electron. 60 46 | [15] | Li H, Cheng H H, Lee L C, Lee C P, Su L H and Suen Y W 2014 Appl. Phys. Lett. 104 241904 | [16] | Tong Y, Han G Q, Liu B, Yang Y, Wang L X, Wang W and Yeo Y C 2013 IEEE Trans. Electron Devices 60 746 | [17] | Zhang X, Zhang D L, Zheng J, Liu Z, He C, Xue C L, Zhang G Z, Li C B, Cheng B W and Wang Q M 2015 Solid-State Electron. 114 178 | [18] | Wang L X, Han G Q, Su S J, Zhou Q, Yang Y, Guo P F, Wang W, Tong Y, Lim P S Y, Liu B, Kong E Y J, Xue C L, Wang Q M, Cheng B W and Yeo Y C 2012 Electrochem. Solid-State Lett. 15 H179 | [19] | Zhang Y Y, Oh J, Li S G, Jung S Y, Park K Y, Shin H S, Lee G W, Wang J S, Majhi P, Tseng H H, Jammy R, Bae T S and Lee H D 2009 Electrochem. Solid-State Lett. 12 H18 | [20] | Zhang Y Y, Oh J, Li S G, Jung S Y, Park K Y, Lee G W, Majhi P, Tseng H H, Jammy R and Lee H D 2010 IEEE Trans. Nanotechnol. 9 258 | [21] | Demeulemeester J, Schrauwen A, Nakatsuka O, Zaima S, Adachi M, Shimura Y, Comrie C M, Fleischmann C, Detavernier C, Temst K and Vantomme A 2011 Appl. Phys. Lett. 99 211905 | [22] | Jin L J, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Chi D Z, Rahman M A, Osipowicz T and Tung C H 2005 J. Appl. Phys. 98 033520 | [23] | Janardhanam V, Kim J S, Moon K, Lee Y B, Kim D G, Kang S M and Choi C J 2011 J. Electrochem. Soc. 158 H846 | [24] | Bouville M, Chi D Z and Srolovitz D J 2007 Phys. Rev. Lett. 98 085503 | [25] | Zhang Y Y, Choi C J, Oh J, Han I S, Li S G, Park K Y, Shin H S, Lee G W, Wang J S, Majhi P, Jammy R and Lee H D 2009 Electrochem. Solid-State Lett. 12 H402 | [26] | Zhu S Y, Yu M B, Lo G Q and Kwong D L 2007 Appl. Phys. Lett. 91 051905 | [27] | Jin L J, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L and Tung C H 2005 J. Appl. Phys. 97 104917 | [28] | Nygren S and Johansson S 1990 J. Appl. Phys. 68 1050 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|