Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 056801    DOI: 10.1088/0256-307X/35/5/056801
Anti-Reflection Characteristics of Si Nanowires for Enhanced Photoluminescence from CdTe/CdS Quantum Dots
Hong-Yu Wang1,2, Dan Shan2,3, Ling Xu2**
1Tongda College, Nanjing University of Posts and Telecommunications, Nanjing 210003
2National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
3School of Electronic and Information Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127
Cite this article:   
Hong-Yu Wang, Dan Shan, Ling Xu 2018 Chin. Phys. Lett. 35 056801
Download: PDF(894KB)   PDF(mobile)(886KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract CdTe/CdS quantum dots (QDs) are fabricated on Si nanowires (NWs) substrates with and without Au nanoparticles (NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy images. The optical properties of samples are also investigated. It is interesting to find that the photoluminescence (PL) intensity of CdTe/CdS QD films on Si nanowire substrates with Au NPs is significantly increased, which can reach 8-fold higher than that of samples on planar Si without Au NPs. The results of finite-difference time-domain simulation indicate that Au NPs induce stronger localization of electric field and then boost the PL intensity of QDs nearby. Furthermore, the time-resolved luminescence decay curve shows the PL lifetime, which is about 5.5 ns at the emission peaks of QD films on planar, increasing from 1.8 ns of QD films on Si NWs to 4.7 ns after introducing Au NPs into Si NWs.
Received: 30 November 2017      Published: 30 April 2018
PACS:  68.65.Hb (Quantum dots (patterned in quantum wells))  
  78.55.-m (Photoluminescence, properties and materials)  
  82.33.Ln (Reactions in sol gels, aerogels, porous media)  
Fund: Supported by the Qing Lan Project of the Higher Education Institutions of Jiangsu Province, Qing Lan Project of Yangzhou Polytechnic Institute, the Natural Science Foundation of Yangzhou City under Grant No YZ2016123, and the National Natural Science Foundation of China under Grant No 61376004.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Hong-Yu Wang
Dan Shan
Ling Xu
[1]Klein M C 1990 Phys. Rev. B 42 1123
[2]Zheng Y G, Gao S and Ying J Y 2007 Adv. Mater. 19 376
[3]Chan W C and Nie S 1998 Science 281 2016
[4]Rogach A L, Franzl T, Klar T A, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmuller A, Rakovich Y P and Donegan J F 2007 J. Phys. Chem. C 111 14628
[5]Gerion D, Parak W J, Williams S C, Zanchet D, Micheel C M and Alivisatos A P 2002 J. Am. Chem. Soc. 124 7070
[6]Yang Y H, Wen Z K, Dong Y P and Gao M Y 2006 Small 2 898
[7]Wang Y L, Cheng Z Q, Ma L, Peng X N, Hao Z H and Wang Q Q 2015 Chin. Phys. Lett. 32 034205
[8]Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U and Artemyev M 2002 Nano Lett. 2 1449
[9]Lee J, Govorov A O, Dulka J and Kotov N A 2004 Nano Lett. 4 2323
[10]Gittleman J I, Sichel E K, Lehmann H W and Widmer R 1979 Appl. Phys. Lett. 35 742
[11]Garnett E and Yang P D 2010 Nano Lett. 10 1082
[12]Zhu J, Yu Z F, Burkhard G F, Hsu C M, Conner S T, Xu Y Q, Wang Q, McGehee M, Fan S H and Cui Y 2009 Nano Lett. 9 279
[13]Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S and Atwater H A 2010 Nat. Mater. 9 239
[14]Peng K Q, Xu Y, Wu Y, Yan Y J, Lee S T and Zhu J 2005 Small 1 1062
[15]Huang Z, Geyer N, Werner P, De J and Gösele U 2011 Adv. Mater. 23 285
[16]Lin G J, Wang H P, Lien D H, Fu P H, Chang H C, Ho C H, Lin C A, Lai K Y and He J H 2014 Nano Energy 6 36
[17]Kumar D, Srivastava S K, Singh P K, Husain M and Kumar V 2011 Sol. Energy Mater. Sol. Cells C 95 215
[18]Yablonovitch E and Cody G D 1982 IEEE Trans. Electron Devices 29 300
[19]Zhai Y Y, Cao Y Q, Lin ZW, Qian MQ, Xu J, Li W, Xu L and Chen K J 2016 IEEE Photon. J. 8 4501708
[20]Ji Y, Zhai Y Y, Yang H, Liu J, Shao W, Xu J, Li W and Chen K J 2017 Nanoscale. 9 16038
[21]Lakowicz J R 2001 Anal. Biochem 298 1
[22]Shao L, Ruan Q F, Wang J F and Lin H Q 2014 Physics 43 290 (in Chinese)
[23]D'Andrea C, Faro MJL, Bertino G, Ossi P M, Neri F, Trusso S, Musumeci P, Galli M, Cioffi N, Lrrera A, Priolo F and Fazio B 2016 Nanotechnology 27 375603
[24]Su Y Y, Wei X P, Peng F, Zhong Y L, Lu Y M, Su S, Xu T G, Lee S T and He Y 2012 Nano Lett. 12 1845
[25]Yang J, You J B, Chen C C, Hsu W C, Tan H R, Zhang X W, Hong Z R and Yang Y 2011 ACS Nano 5 6210
[26]Jones M, Nedeljkovic J, Ellingson R J, Nozik A J and Rumbles G 2003 J. Phys. Chem. B 107 11346
[27]Su D, Dou X M, Ding K, Wang H Y, Ni H Q, Niu Z C and Sun B Q 2015 Acta Phys. Sin. 64 235201 (in Chinese)
[28]Neretina S, Qian W, Dreaden E, El-Sayed M A, Hughes R A, Preston P S and Mascher P 2008 Nano Lett. 8 2410
[29]Geddes C D and Lakowicz J R 2002 J. Fluoresc. 12 121
[30]Lakowicz J R 2005 Anal. Biochem. 337 171
Related articles from Frontiers Journals
[1] Qiu-Lin Zhong, Ming-Rui Tan, Qing-Hui Liu, Ning Sui, Ke Bi, Mou-Cui Ni, Ying-Hui Wang, Han-Zhuang Zhang. Photoluminescence Characteristics of ZnCuInS-ZnS Core-Shell Semiconductor Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(4): 056801
[2] ZHANG Shi-Zhu, YE Xiao-Ling, XU Bo, LIU Shu-Man, ZHOU Wen-Fei, WANG Zhan-Guo. Fabrication of Low-Density Long-Wavelength InAs Quantum Dots using a Formation-Dissolution-Regrowth Method[J]. Chin. Phys. Lett., 2013, 30(8): 056801
[3] CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin. A New Proof for the Harmonic-Potential Theorem[J]. Chin. Phys. Lett., 2013, 30(2): 056801
[4] LI Xiao-Jing, K. S. Chan. Electric-Field Switching of Bright and Dark Excitons in Semiconductor Crossed Nanowires[J]. Chin. Phys. Lett., 2013, 30(1): 056801
[5] LI Xiao-Jing. Electric-Field Switching of Exciton Spin Splitting in Asymmetrical Coupled Quantum Dots[J]. Chin. Phys. Lett., 2012, 29(8): 056801
[6] SIB KRISHNA Ghoshal**, M. R. Sahar, M. S. Rohani . Dielectric Function of Silicon Nanoclusters: Role of Hydrogen[J]. Chin. Phys. Lett., 2011, 28(9): 056801
[7] TIAN Peng, HUANG Li-Rong**, YUAN Xiu-Hua, HUANG De-Xiu . Effects of an InGaAs Cap Layer on the Optical Properties of InAs Quantum Dot Molecules[J]. Chin. Phys. Lett., 2011, 28(6): 056801
[8] LI Zhan-Guo, LIU Guo-Jun**, LI Lin, FENG Ming, LI Mei, LU Peng, ZOU Yong-Gang, LI Lian-He, GAO Xin. Strain-Engineered Low-Density InAs Bilayer Quantum Dots for Single Photon Emission[J]. Chin. Phys. Lett., 2010, 27(12): 056801
[9] ZHANG Xian-Gao, CHEN Kun-Ji, FANG Zhong-Hui, QIAN Xin-Ye, LIU Guang-Yuan, JIANG Xiao-Fan, MA Zhong-Yuan, XU Jun, HUANG Xin-Fan, JI Jian-Xin, HE Fei, SONG Kuang-Bao, ZHANG Jun, WAN Hui, WANG Rong-Hua. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment[J]. Chin. Phys. Lett., 2010, 27(8): 056801
[10] DONG Ping, ZHANG Gang, CAO Zhuo-Liang. Entanglement Purification for Mixed Entangled Quantum Dot States via Superconducing Transmission Line Resonators[J]. Chin. Phys. Lett., 2010, 27(3): 056801
[11] WANG Peng-Fei, XIONG Yong-Hua, WANG Hai-Li, HUANG She-Song, NI Hai-Qiao, XU Ying-Qiang, HE Zhen-Hong, NIU Zhi-Chuan. GaAs-Based Metamorphic Long-Wavelength InAs Quantum Dots Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2009, 26(6): 056801
[12] HAN Gen-Quan, ZENG Yu-Gang, YU Jin-Zhong, CHENG Bu-Wen, YANG Hai-Tao. Evolution of Ge and SiGe Quantum Dots under Excimer Laser Annealing[J]. Chin. Phys. Lett., 2008, 25(1): 056801
[13] WU Bing-Peng, WU Dong-Hai, NI Hai-Qiao, HUANG She-Song, ZHAN Feng, XIONG Yong-Hua, XU Ying-Qiang, NIU Zhi-Chuan. Optimization of Metamorphic InGaAs Quantum Wells on GaAs Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2007, 24(12): 056801
[14] LIANG Song, ZHU Hong-Liang, PAN Jiao-Qing, ZHAO Ling-Juan, WANG Wei. Effect of Annealing on Optical Properties of InAs Quantum Dots Grown by MOCVD on GaAs (100) Vicinal Substrates[J]. Chin. Phys. Lett., 2005, 22(10): 056801
[15] DENG Ning, ZHANG Lei, CHEN Pei-Yi. Investigation of Composition in Nano-Scaled Self-Assembled SiGe Islands[J]. Chin. Phys. Lett., 2005, 22(7): 056801
Full text