Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 054207    DOI: 10.1088/0256-307X/35/5/054207
Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography
Gen Yue1,2, Yu Lei1,2, Jun-Hui Die1,2, Hai-Qiang Jia1,2, Hong Chen1,2**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physics, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Gen Yue, Yu Lei, Jun-Hui Die et al  2018 Chin. Phys. Lett. 35 054207
Download: PDF(1081KB)   PDF(mobile)(1071KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions is characterized by a scanning electron microscope. The average size in each region ranges from 270 nm to 320 nm, and the deviation is almost 4%, which is approaching the applicable value of 3% in the industrial process. We simulate the two-beam laser interference lithography system with MATLAB software and then calculate the distribution of light intensity around the 4 inch area. The experimental data fit very well with the calculated results. Analysis of the experimental data and calculated data indicates that laser beam quality and space filter play important roles in achieving a periodical nanoscale pattern with high uniformity and large area. There is the potential to obtain more practical applications.
Received: 19 March 2018      Published: 30 April 2018
PACS:  42.25.Hz (Interference)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
  42.60.By (Design of specific laser systems)  
  78.40.Fy (Semiconductors)  
Fund: Supported by the Scientific Equipment Research Program of Chinese Academy of Sciences under Grant No 2014Y4201449.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Gen Yue
Yu Lei
Jun-Hui Die
Hai-Qiang Jia
Hong Chen
[1]Katchalski T, Teitelbaum E and Friesem A A 2004 Appl. Phys. Lett. 84 472
[2]Rosenblatt D, Sharon A and Friesem A A 1997 IEEE J. Quantum Electron. 33 2038
[3]Lee H, Hong S and Yang K 2006 Appl. Phys. Lett. 88 143112
[4]Yang M, Liu L H, Ning L H et al 2016 Chin. Phys. B 25 017401
[5]Gao MY, Zhan X H, Chen F et al 2017 Mod. Phys. Lett. B 31 1740002
[6]Deubel M, Freymann G V, Wegener M, Pereira S et al 2004 Nat. Mater. 3 444
[7]Muralt P 2000 J. Micromech. Microeng. 10 136
[8]Dimitrakopoulos C D and Malenfant P R L 2002 Adv. Mater. 14 99
[9]Li A P, Müller F, Birner A, Nielsch K et al 1998 J. Appl. Phys. 84 6023
[10]Zhang Y J, Lu R, Liu Q S et al 2003 Thin Solid Films 437 1
[11]Zhou Y, Zhang Z J and Yue Y 2005 Mater. Lett. 59 3375
[12]Fischer H and Martin O J F 2008 Opt. Express 16 9144
[13]Nakamura, Shuji 2000 Introduction to nitride semiconductor blue lasers and light emitting diodes (Taylor & Francis)
[14]Gao H Y, Yan F W, Zhang Y et al 2008 J. Appl. Phys. 103 014314
[15]Dong P, Yan J C, Wang J X et al 2013 Appl. Phys. Lett. 102 241113
[16]Cheng Y, Wang L C et al 2013 ECS Solid State Lett. 2 Q93
[17]Zhong Z Y, Chen P X, Jiang Z M et al 2008 Appl. Phys. Lett. 93 043106
[18]Qiao L, He M et al 2017 J. Nanoelectron. Optoelectron. 12 674
[19]Li K L, An J M, Zhang J S et al 2016 Chin. Phys. B 25 0124209
[20]Zhang Y L, Chen Q D, Xia H et al 2010 Nano Today 5 5
[21]Takei S 2010 Appl. Phys. Express 3 025202
[22]Guerfi Y, Carcenac F and Larrieu G 2013 Microelectron. Eng. 110 173
[23]Xie Q, Hong M H, Tan H L et al 2008 J. Alloys Compd. 449 1
[24]Kravchenko A, Shevchenko A, Ovchinnikov V et al 2011 Advanced Mater. 23 4174
[25]Das N, Karar A, Vasiliev M et al 2011 Opt. Commun. 284 1694
[26]Sidharthan R and Murukeshan V M 2012 Laser Phys. Lett. 9 691
[27]Jinnil C, Chung M H et al 2011 J. Nanosci. Nanotechnol. 11 778
[28]Mao W D, Wathuthanthri I and Choi C H 2011 Opt. Lett. 36 3176
[29]Dai L G, Yang F, Yue Gen et al 2014 Proc. SPIE 9277 927715
[30]Zhang Z A, Dong L T, Ding Y F et al 2017 Opt. Express 25 29135
[31]Bagal A and Chang C H 2013 Opt. Lett. 38 2531
Related articles from Frontiers Journals
[1] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 054207
[2] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 054207
[3] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 054207
[4] Jie-Hui Huang, Tao Peng, Luo-Jia Wang, Shi-Yao Zhu. Simultaneous Measurement of Fringe Visibility and Path Predictability of Wave-Particle Duality[J]. Chin. Phys. Lett., 2018, 35(8): 054207
[5] Hai-Sha Niu, Lian-Qing Zhu, Jian-Jun Song. Laser Intensity Variation in Amplitude and Phase Induced by Elliptically Polarized Feedback[J]. Chin. Phys. Lett., 2018, 35(5): 054207
[6] Xian-Ping Luo, Fei-Ru Wang, Chun-Lei Chen, Ling-Li Zhang, Lei Wang, Wei-Min Sun, Yong-Jun Liu. A Novel Mach–Zehnder Interferometer Based on Hybrid Liquid Crystal–Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2017, 34(12): 054207
[7] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 054207
[8] Jun Dong, Zhong-Gui Lu, Bo Zhang, Zhi-Tao Peng, Zhi-Hong Sun, Yan-Wen Xia, Hao-Yu Yuan, Jun Tang, De-Yan Zhu, Hua Liu, Jia-Kun Lv. Single-Shot Measurement of Transient Phase Shift Induced by Laser Wake[J]. Chin. Phys. Lett., 2017, 34(5): 054207
[9] Yu Si, Ling-Jun Kong, Yu Zhang, Zhi-Cheng Ren, Yue Pan, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Spatial-Variant Geometric Phase of Hybrid-Polarized Vector Optical Fields[J]. Chin. Phys. Lett., 2017, 34(4): 054207
[10] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 054207
[11] Fu Sun, Dong Wei, Gui-Zhong Zhang, Xin Ding, Jian-Quan Yao. Dynamic Interference Photoelectron Spectra in Double Ionization: Numerical Simulation of 1D Helium[J]. Chin. Phys. Lett., 2016, 33(12): 054207
[12] MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method[J]. Chin. Phys. Lett., 2015, 32(09): 054207
[13] LI Fu, Hashmi F. A., ZHANG Jun-Xiang, ZHU Shi-Yao. An Ideal Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2015, 32(5): 054207
[14] WEN Feng, ZHANG Xun, YUAN Chen-Zhi, LI Chang-Biao, WANG Jing-Da, ZHANG Yan-Peng. Visibility and Resolution Enhancement of Fourth-Order Ghost Interference with Thermal Light[J]. Chin. Phys. Lett., 2015, 32(01): 054207
[15] XU Yuan, HUANG Yuan-Yuan, HU Ling, ZHANG Pei, WEI Dong, LI Hong-Rong, GAO Hong, LI Fu-Li. Measurement of Berry Phase Associated with Higher Dimensional Orbital Angular Momentum of Light by Interference Method[J]. Chin. Phys. Lett., 2013, 30(10): 054207
Full text