Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 054601    DOI: 10.1088/0256-307X/35/5/054601
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Tunable Band Gap in Piezoelectric Composite Rod Based on the Inter-Coupling Effect
Ze-Qun Fang, Zhi-Lin Hou**
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641
Cite this article:   
Ze-Qun Fang, Zhi-Lin Hou 2018 Chin. Phys. Lett. 35 054601
Download: PDF(936KB)   PDF(mobile)(1294KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are shown and the dispersion relation is calculated. The results show that, by introducing the inter-coupling between the different piezoelectric segments, which is accomplished by serially connecting every $n$ piezoelectric segment into supercells, some tunable Bragg band gaps can accordingly be opened in the low frequency region. The investigation could provide a new guideline for the tunable phononic crystal under passive control.
Received: 21 December 2017      Published: 30 April 2018
PACS:  46.40.-f (Vibrations and mechanical waves)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
  62.25.Jk (Mechanical modes of vibration)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11274121.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/5/054601       OR      https://cpl.iphy.ac.cn/Y2018/V35/I5/054601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ze-Qun Fang
Zhi-Lin Hou
[1]Bergamini A, Delpero T, Simoni L D, Lillo L D, Ruzzene M and Ermanni P 2014 Adv. Mater. 26 1343
[2]Hou Z, Wu F and Liu Y 2004 Solid State Commun. 130 745
[3]Wu T T, Huang Z G, Tsai T C and Wu T C 2008 Appl. Phys. Lett. 93 111902
[4]Huang P P, Yao Y W, Wu F G, Zhang X, Li J and Hu A Z 2015 Chin. Phys. B 24 054301
[5]Liu X J and Fan Y H 2013 Chin. Phys. B 22 036101
[6]Chen A L, Tong L L and Wang Y S 2015 Chin. Phys. B 24 066101
[7]Liu Z Y, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734
[8]Cheng Y, Xu J Y and Liu X J 2008 Phys. Rev. B 77 045134
[9]Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nat. Mater. 5 452
[10]Wang T, Wang H, Sheng M P and Qin Q H 2016 Chin. Phys. B 25 046301
[11]Wang Y Y, Ding E L, Liu X Z and Gong X F 2016 Chin. Phys. B 25 124305
[12]Casadei F, Delpero T, Bergamini A, Ermanni P and Ruzzene M 2012 J. Appl. Phys. 112 064902
[13]Hwan O J, Kyu L I, Sik M P and Kim Y Y 2011 Appl. Phys. Lett. 99 083505
[14]Gardonio P and Casagrande D 2017 J. Sound Vib. 395 26
[15]Yan B, Wang K, Hu Z F, Wu C Y and Zhang X N 2017 Appl. Sci. 7 494
[16]Ramadan K S, Sameoto D and Evoy S 2014 Smart Mater. Struct. 23 033001
[17]Scheidler J J and Asnani V M 2017 Smart Mater. Struct. 26 035057
[18]Kushwaha M S, Halevi P, Dobrzynski L and Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022
[19]Bergamini A E, Zündel M, Flores P E, Delpero T, Ruzzene M and Ermanni P 2015 J. Appl. Phys. 118 154310
[20]Degraeve S, Granger C, Dubus B, Vasseur J O, Pham Thi M and Hladky-Hennion C A 2014 J. Appl. Phys. 115 194508
[21]Chen Y Y, Hu G K and Huang G L 2016 Smart Mater. Struct. 25 105036
[22]Wang G, Cheng J Q, Chen J W and He Y Z 2017 Smart Mater. Struct. 26 025031
[23]Casadei F and Bertoldi K 2014 J. Appl. Phys. 115 034907
[24]Shi P, Chen C Q and Zou W N 2015 Ultrasonics 55 42
[25]Yeh J Y 2007 Phys. Rev. B 400 137
[26]Wang P, Casadei F, Shan S C, Weaver J C and Bertoldi K 2014 Phys. Rev. Lett. 113 014301
[27]Hou Z and Assouar B M 2015 Appl. Phys. Lett. 106 251901
[28]Huang Y, Wang H M and Chen W Q 2014 J. Appl. Phys. 115 133501
[29]Chen S B, Han X Y, Yu D L and Wen J H 2010 Acta Phys. Sin. 59 0387 (in Chinese)
[30]Kherraz N, Haumesser L, Levassort F, Benard P and Morvan B 2016 Appl. Phys. Lett. 108 093503
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 054601
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 054601
[3] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 054601
[4] CHEN Qiong, YANG Xian-Qing**, WANG Zhen-Hui, ZHAO Xin-Yin. Two Kinds of Localized Oscillating Modes in Strongly Nonlinear Hertzian Chains with Defect[J]. Chin. Phys. Lett., 2012, 29(1): 054601
[5] CHEN Wen. Lévy Stable Distribution and [0,2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media[J]. Chin. Phys. Lett., 2005, 22(10): 054601
Viewed
Full text


Abstract