Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 055201    DOI: 10.1088/0256-307X/35/5/055201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry
Hong-Yu Guo1,2, Li-Feng Wang2,3, Wen-Hua Ye2,3**, Jun-Feng Wu2, Wei-Yan Zhang2**
1Graduate School, China Academy of Engineering Physics, Beijing 100088
2Institute of Applied Physics and Computational Mathematics, Beijing 100094
3HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871
Cite this article:   
Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye et al  2018 Chin. Phys. Lett. 35 055201
Download: PDF(549KB)   PDF(mobile)(545KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Rayleigh–Taylor instability (RTI) in cylindrical geometry is investigated analytically through a second-order weakly nonlinear (WN) theory considering the Bell–Plesset (BP) effect. The governing equations for the combined perturbation growth are derived. The WN solutions for an exponentially convergent cylinder are obtained. It is found that the BP and RTI growths are strongly coupled, which results in the bubble-spike asymmetric structure in the WN stage. The large Atwood number leads to the large deformation of the convergent interface. The amplitude of the spike grows faster than that of the bubble especially for large mode number $m$ and large Atwood number $A$. The averaged interface radius is small for large mode number perturbation due to the mode-coupling effect.
Received: 27 October 2017      Published: 30 April 2018
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11275031, 11475034, 11575033 and 11274026, and the National Basic Research Program of China under Grant No 2013CB834100.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/5/055201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I5/055201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Yu Guo
Li-Feng Wang
Wen-Hua Ye
Jun-Feng Wu
Wei-Yan Zhang
[1]Rayleigh L 1883 Proc. London Math. Soc. s1-15 69
[2]Taylor G 1950 Proc. R. Soc. London Ser. A 201 192
[3]Atzeni S et al 2004 The Physics of Inertial Fusion: Beam Plasma Interaction Hydrodynamics, Hot Dense Mater (Oxford: Oxford University)
[4]Lindl J D et al 2004 Phys. Plasmas 11 339
[5]Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang M, Ding Y K and Zhang W Y 2017 Sci. Chin. Phys. Mech. Astron. 60 055201
[6]Haines M G 2011 Plasma Phys. Control. Fusion 53 093001
[7]Craxton R S et al 2015 Phys. Plasmas 22 110501
[8]Bell G I 1951 Los Alamos Natl. Laboratory Report LA 1321
[9]Plesset M S 1954 J. Appl. Phys. 25 96
[10]Amendt P et al 2003 Phys. Plasmas 10 820
[11]Mikaelian K O 1990 Phys. Rev. A 42 3400
[12]Mikaelian K O 2005 Phys. Fluids 17 094105
[13]Epstein R 2004 Phys. Plasmas 11 5114
[14]Velikovich A L and Schmit P F 2015 Phys. Plasmas 22 122711
[15]Clark D S et al 2013 Phys. Plasmas 20 056318
[16]Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y and He X T 2014 Phys. Plasmas 21 122710
[17]Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329
[18]Guo H Y, Wang L F, Ye W H, Wu J F and Zhang W Y 2017 Chin. Phys. Lett. 34 045201
[19]Wang L F, Wu J F, Ye W H, Zhang W Y and He X T 2013 Phys. Plasmas 20 042708
[20]Zhang J et al 2017 Phys. Plasmas 24 062703
[21]Guo H Y et al 2014 Chin. Phys. Lett. 31 044702
[22]Wang L F, Wu J F, Guo H Y, Ye W H, Liu J, Zhang W Y and He X T 2015 Phys. Plasmas 22 082702
[23]Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y and He X T 2016 Phys. Plasmas 23 052713
Related articles from Frontiers Journals
[1] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wun-Hua Ye, and Xian-Tu He. Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(7): 055201
[2] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(5): 055201
[3] Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye. Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell[J]. Chin. Phys. Lett., 2020, 37(2): 055201
[4] Huan Zheng, Qian Chen, Baoqing Meng, Junsheng Zeng, Baolin Tian. On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow[J]. Chin. Phys. Lett., 2020, 37(1): 055201
[5] Meng Li, Wen-Hua Ye. Successive Picket Drive for Mitigating the Ablative Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2019, 36(2): 055201
[6] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers[J]. Chin. Phys. Lett., 2017, 34(7): 055201
[7] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 055201
[8] XU Teng, XU Li-Xin, WANG An-Ting, GU Chun, WANG Sheng-Bo, LIU Jing, WEI An-Kun. Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion[J]. Chin. Phys. Lett., 2014, 31(09): 055201
[9] GUO Hong-Yu, YU Xiao-Jin, WANG Li-Feng, YE Wen-Hua, WU Jun-Feng, LI Ying-Jun. On the Second Harmonic Generation through Bell–Plesset Effects in Cylindrical Geometry[J]. Chin. Phys. Lett., 2014, 31(04): 055201
[10] WANG Li-Feng, WU Jun-Feng, YE Wen-Hua, FAN Zheng-Feng, HE Xian-Tu. Design of an Indirect-Drive Pulse Shape for ~1.6 MJ Inertial Confinement Fusion Ignition Capsules[J]. Chin. Phys. Lett., 2014, 31(04): 055201
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 055201
[12] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 055201
[13] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 055201
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 055201
Viewed
Full text


Abstract