GENERAL |
|
|
|
|
Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry |
Lei Du1, Zhihao Xu1,2,3, Chuanhao Yin4, Liping Guo1,2,3** |
1Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 4Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Lei Du, Zhihao Xu, Chuanhao Yin et al 2018 Chin. Phys. Lett. 35 050301 |
|
|
Abstract We investigate the dynamics of parity- and time-reversal ($\mathcal{PT}$) symmetric two-energy-level atoms in the presence of two optical and one radio-frequency fields. The strength and relative phase of fields can drive the system from the unbroken to the broken $\mathcal{PT}$ symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of the unbroken $\mathcal{PT}$ symmetry. At the exception point, the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find that the emergence of the $z$ components of the fixed points is the feature of the $\mathcal{PT}$ symmetry breaking and the projections in the $x$–$y$ plane can be controlled with high flexibility compared with the standard two-level system with the $\mathcal{PT}$ symmetry. It helps to study the dynamic behavior of the complex $\mathcal{PT}$ symmetric model.
|
|
Received: 27 December 2017
Published: 30 April 2018
|
|
PACS: |
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11104171, 11404199, 11574187 and 11604188, the Youth Science Foundation of Shanxi Province of China under Grant No 2012021003-1, and the Natural Science Foundation for Youths of Shanxi Province under Grant Nos 201601D201027 and 1331KSC. |
|
|
[1] | Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 | | Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 40 2201 | [2] | Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902 | [3] | Rüter C E, Makris K G, EI-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192 | [4] | Bittner S, Dietz B, Günther U, Harney H L, Miski-Oglu M, Richter A and Schäfer F 2012 Phys. Rev. Lett. 108 024101 | [5] | Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524 | [6] | Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972 | [7] | Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975 | [8] | Hodaei H, Miri M A, Hassan A U, Hayenga W E, Heinrich M, Christodoulides D N and Khajavikhan M 2015 Opt. Lett. 40 4955 | [9] | Schindler J, Lie A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101 | [10] | Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394 | | Jing H, Özdemir S K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L and Nori F 2015 Sci. Rep. 5 9663 | [11] | Wimmer M, Miri M A, Christodoulides D and Peschel U 2016 Sci. Rep. 5 17760 | [12] | Ben-Aryeh Y, Mann A and Yaakov I 2004 J. Phys. A 37 12059 | [13] | Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403 | [14] | Graefe E M 2012 J. Phys. A 45 444015 | [15] | Lian X, Zhong H, Xie Q, Zhou X, Wu Y and Liao W 2014 Eur. Phys. J. D 68 189 | [16] | Baradaran M and Panahi H 2017 Chin. Phys. B 26 060301 | [17] | Graefe E M, Korsch H J and Niederle A E 2008 Phys. Rev. Lett. 101 150408 | [18] | Graefe E M, Korsch H J and Niederle A E 2010 Phys. Rev. A 82 013629 | [19] | Zhu B G, Lü R and Chen S 2015 Phys. Rev. A 91 042131 | | Zhu B G, Lü R and Chen S 2016 Phys. Rev. A 93 032129 | [20] | Jin L and Song Z 2009 Phys. Rev. A 80 052107 | | Yuce C 2015 Phys. Lett. A 379 1213 | | Joglekar Y N, Scott D, Babbey M and Saxena A 2010 Phys. Rev. A 82 030103(R) | [21] | Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003 | [22] | Alexanian M and Bose S K 1995 Phys. Rev. A 52 2218 | [23] | Sun X L, Zhang J W, Cheng P F, Zuo Y N and Wang L J 2018 Chin. Phys. B 27 023101 | [24] | Shahriar M S and Hemmer P R 1990 Phys. Rev. Lett. 65 1865 | [25] | Li H, Sautenkov V A, Rostovtsev Y V, Welch G R, Hemmer P R and Scully M O 2009 Phys. Rev. A 80 023820 | [26] | Luo B, Tang H and Guo H 2009 J. Phys. B 42 235505 | [27] | Basler C, Grzesiak J and Helm H 2015 Phys. Rev. A 92 013809 | [28] | Novikov S, Sweeney T, Robinson J E, Premaratne S P, Suri B, Wellstood F C and Palmer B S 2016 Nat. Phys. 12 75 | [29] | Peng P, Cao W, Shen C, Qu W, Wen J, Jiang L and Xiao Y 2016 Nat. Phys. 12 1139 | [30] | Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401 | [31] | Milburn T J, Doppler J, Holmes C A, Portolan S, Rotter S and Rabl P 2015 Phys. Rev. A 92 052124 | [32] | Menke H, Klett M, Cartarius H, Main J and Wunner G 2016 Phys. Rev. A 93 013401 | [33] | Hang C, Huang G and Konotop V V 2013 Phys. Rev. Lett. 110 083604 | [34] | Li H, Dou J and Huang G 2013 Opt. Express 21 32053 | [35] | Lee T E and Chan C K 2014 Phys. Rev. X 4 041001 | [36] | Hao Y and Gu Q 2011 Phys. Rev. A 83 043620 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|