ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom |
Ben-quan Lu1,2,3, Yebing Wang1,2, Yang Guo1,2, Qinfang Xu1, Mojuan Yin1, Jiguang Li3, Hong Chang1,2** |
1National Time Service Center, Xi'an 710000 2University of Chinese Academy of Sciences, Beijing 100049 3Institute of Applied Physics and Computational Mathematics, Beijing 100088
|
|
Cite this article: |
Ben-quan Lu, Yebing Wang, Yang Guo et al 2018 Chin. Phys. Lett. 35 043203 |
|
|
Abstract We present an experimental determination on the Landé $g$-factors for the 5$s^{2}$ $^{1}\!S_{0}$ and $5s5p$ $^{3}\!P_{0}$ states in ultra-cold atomic systems, which is important for evaluating the Zeeman shift of the clock transition in the $^{87}$Sr optical lattice clock. The Zeeman shift of the $5s5p$ $^{3}\!P_{0}$–5$s^{2}$ $^{1}\!S_{0}$ forbidden transition is measured with the $\pi$-polarized and $\sigma^{\pm}$-polarized interrogations at different magnetic field strengths. Moreover, in the $g$-factor measurement with the $\sigma^{\pm}$-transition spectra, it is unnecessary to calibrate the external magnetic field. By this means, the ground state 5$s^{2}$ $^{1}\!S_{0}$ $g$-factor for the $^{87}$Sr atom is $-1.306(52)\times10^{-4}$, which is the first experimental determination to the best of our knowledge, and the result matches very well with the theoretical estimation. The differential $g$-factor $\delta g$ between the $5s5p$ $^{3}\!P_{0}$ state and the 5$s^{2}$ $^{1}\!S_{0}$ state of the $^{87}$Sr atoms is measured in the experiment as well, which are $-7.67(36)\times10^{-5}$ with $\pi$-transition spectra and $-7.72(43)\times10^{-5}$ with $\sigma^{\pm}$-transition spectra, in good agreement with the previous report [Phys. Rev. A 76 (2007) 022510]. This work can also be used for determining the differential $g$-factor of the clock states for the optical clocks based on other atoms.
|
|
Received: 23 January 2018
Published: 13 March 2018
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61127901, 11404025 and 91536106, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB21030700, the Key Research Project of Frontier Science of Chinese Academy of Sciences under Grant No QYZDB-SSW-JSC004, and the China Postdoctoral Science Foundation under Grant No 2014M560061. |
|
|
[1] | Poli N, Oates C W, Gill P and Tino G M 2013 Riv. Nuovo Cimento 36 555 | [2] | Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 | [3] | Takamoto M, Takano T and Katori H 1872 Nature 5 288 | [4] | Akatsuka T, Takamoto M and Katori H 2010 Phys. Rev. A 81 023402 | [5] | Weyers S, Lipphardt B and Schnatz H 2009 Phys. Rev. A 79 031803 | [6] | Turyshev S G 2009 From Quantum to Cosmos: Fundamental Physics Research in Space (Singapore: World Scientific) chap 3 p 57 | [7] | Rosenb, T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Winel, D J and Bergquist J C 2008 Science 319 1808 | [8] | Norcia M A, Cline J R K and Thompson J K 2017 Phys. Rev. A 96 042118 | [9] | Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J and Cornell E A 2017 Phys. Rev. Lett. 119 153001 | [10] | Major F G 2007 The Quantum Beat: Principles And Applications Of Atomic Clocks (New York: Springer) vol 2 chap 19 p 417 | [11] | Grewal M S, Andrews A P and Bartone C G 2013 Global Navigation Satellite Systems, Inertial Navigation And Integration (New York: John Wiley & Sons) chap 2 p 9 | [12] | Gill P 2011 Philos. Trans. R. Soc. A 369 4109 | [13] | B, Y B and Osherov I 2011 Phys. Rev. A 84 013822 | [14] | Tscherbul T V, Brumer P and Buchachenko A A 2016 Phys. Rev. Lett. 117 143201 | [15] | Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2015 Nature 506 71 | [16] | Ichiro U, Masao T, Manoj D, Takuya O and Hidetoshi K 2015 Nat. Photon. 9 185 | [17] | Lahaye B and Margerie J 1975 J. Phys. France 36 943 | [18] | Porsev S G, Safronova U I and Safronova M S 2017 Phys. Rev. A 96 012509 | [19] | Itano W M 2000 J. Res. Natl. Inst. Stand. Technol. 105 829 | [20] | Tommaseo G, Pfeil T, Revalde G, Werth G, Indelicato P and Desclaux J P 2003 Eur. Phys. J. D 25 113 | [21] | Meggers W F 1967 J. Res. Natl. Bur. Stand. 71A 396 | [22] | Porsev S G, Derevianko A and Fortson E N 2004 Phys. Rev. A 69 021403 | [23] | Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M and Ye J 2007 Phys. Rev. A 76 022510 | [24] | Rosenb, T, Schmidt P O, Hume D B, Itano W M, Fortier T M, Stalnaker J E, Kim K, Diddams S A, Koelemeij J C J, Bergquist J C and Wineland D J 2007 Phys. Rev. Lett. 98 220801 | [25] | Xu Q, Liu H, Lu B, Wang Y, Yin M, Kong D, Ren J, Tian X and Chang H 2015 Chin. Opt. Lett. 13 100201 | [26] | Ovsiannikov V D, Pal'chikov V G, Taichenachev A V, Yudin V I, Katori H and Takamoto M 2007 Phys. Rev. A 75 020501 | [27] | Boyd M M, Ludlow A D, Blatt S, Foreman S M, Ido T, Zelevinsky T and Ye J 2007 Phys. Rev. Lett. 98 083002 | [28] | Brusch A, Targat R L, Baillard X, Fouché M and Lemonde P 2006 Phys. Rev. Lett. 96 103003 | [29] | Lemonde P 2009 Eur. Phys. J. Spec. Top. 172 81 | [30] | Kopfermann H 1963 Nuclear Moments (New York: Academic Press) | [31] | Olschewski L 1972 Z. Phys. 249 205 | [32] | Santra R, Christ K V and Greene C H 2004 Phys. Rev. A 69 042510 | [33] | Takamoto M, Hong F L, Higashi R, Fujii Y, Imae M and Katori H 2006 J. Phys. Soc. Jpn. 75 104302 | [34] | Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|