Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 043203    DOI: 10.1088/0256-307X/35/4/043203
ATOMIC AND MOLECULAR PHYSICS |
Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom
Ben-quan Lu1,2,3, Yebing Wang1,2, Yang Guo1,2, Qinfang Xu1, Mojuan Yin1, Jiguang Li3, Hong Chang1,2**
1National Time Service Center, Xi'an 710000
2University of Chinese Academy of Sciences, Beijing 100049
3Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
Ben-quan Lu, Yebing Wang, Yang Guo et al  2018 Chin. Phys. Lett. 35 043203
Download: PDF(733KB)   PDF(mobile)(723KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an experimental determination on the Landé $g$-factors for the 5$s^{2}$ $^{1}\!S_{0}$ and $5s5p$ $^{3}\!P_{0}$ states in ultra-cold atomic systems, which is important for evaluating the Zeeman shift of the clock transition in the $^{87}$Sr optical lattice clock. The Zeeman shift of the $5s5p$ $^{3}\!P_{0}$–5$s^{2}$ $^{1}\!S_{0}$ forbidden transition is measured with the $\pi$-polarized and $\sigma^{\pm}$-polarized interrogations at different magnetic field strengths. Moreover, in the $g$-factor measurement with the $\sigma^{\pm}$-transition spectra, it is unnecessary to calibrate the external magnetic field. By this means, the ground state 5$s^{2}$ $^{1}\!S_{0}$ $g$-factor for the $^{87}$Sr atom is $-1.306(52)\times10^{-4}$, which is the first experimental determination to the best of our knowledge, and the result matches very well with the theoretical estimation. The differential $g$-factor $\delta g$ between the $5s5p$ $^{3}\!P_{0}$ state and the 5$s^{2}$ $^{1}\!S_{0}$ state of the $^{87}$Sr atoms is measured in the experiment as well, which are $-7.67(36)\times10^{-5}$ with $\pi$-transition spectra and $-7.72(43)\times10^{-5}$ with $\sigma^{\pm}$-transition spectra, in good agreement with the previous report [Phys. Rev. A 76 (2007) 022510]. This work can also be used for determining the differential $g$-factor of the clock states for the optical clocks based on other atoms.
Received: 23 January 2018      Published: 13 March 2018
PACS:  32.60.+i (Zeeman and Stark effects)  
  37.10.Jk (Atoms in optical lattices)  
  32.30.-r (Atomic spectra?)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61127901, 11404025 and 91536106, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB21030700, the Key Research Project of Frontier Science of Chinese Academy of Sciences under Grant No QYZDB-SSW-JSC004, and the China Postdoctoral Science Foundation under Grant No 2014M560061.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/043203       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/043203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ben-quan Lu
Yebing Wang
Yang Guo
Qinfang Xu
Mojuan Yin
Jiguang Li
Hong Chang
[1]Poli N, Oates C W, Gill P and Tino G M 2013 Riv. Nuovo Cimento 36 555
[2]Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[3]Takamoto M, Takano T and Katori H 1872 Nature 5 288
[4]Akatsuka T, Takamoto M and Katori H 2010 Phys. Rev. A 81 023402
[5]Weyers S, Lipphardt B and Schnatz H 2009 Phys. Rev. A 79 031803
[6]Turyshev S G 2009 From Quantum to Cosmos: Fundamental Physics Research in Space (Singapore: World Scientific) chap 3 p 57
[7]Rosenb, T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Winel, D J and Bergquist J C 2008 Science 319 1808
[8]Norcia M A, Cline J R K and Thompson J K 2017 Phys. Rev. A 96 042118
[9]Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J and Cornell E A 2017 Phys. Rev. Lett. 119 153001
[10]Major F G 2007 The Quantum Beat: Principles And Applications Of Atomic Clocks (New York: Springer) vol 2 chap 19 p 417
[11]Grewal M S, Andrews A P and Bartone C G 2013 Global Navigation Satellite Systems, Inertial Navigation And Integration (New York: John Wiley & Sons) chap 2 p 9
[12]Gill P 2011 Philos. Trans. R. Soc. A 369 4109
[13]B, Y B and Osherov I 2011 Phys. Rev. A 84 013822
[14]Tscherbul T V, Brumer P and Buchachenko A A 2016 Phys. Rev. Lett. 117 143201
[15]Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2015 Nature 506 71
[16]Ichiro U, Masao T, Manoj D, Takuya O and Hidetoshi K 2015 Nat. Photon. 9 185
[17]Lahaye B and Margerie J 1975 J. Phys. France 36 943
[18]Porsev S G, Safronova U I and Safronova M S 2017 Phys. Rev. A 96 012509
[19]Itano W M 2000 J. Res. Natl. Inst. Stand. Technol. 105 829
[20]Tommaseo G, Pfeil T, Revalde G, Werth G, Indelicato P and Desclaux J P 2003 Eur. Phys. J. D 25 113
[21]Meggers W F 1967 J. Res. Natl. Bur. Stand. 71A 396
[22]Porsev S G, Derevianko A and Fortson E N 2004 Phys. Rev. A 69 021403
[23]Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M and Ye J 2007 Phys. Rev. A 76 022510
[24]Rosenb, T, Schmidt P O, Hume D B, Itano W M, Fortier T M, Stalnaker J E, Kim K, Diddams S A, Koelemeij J C J, Bergquist J C and Wineland D J 2007 Phys. Rev. Lett. 98 220801
[25]Xu Q, Liu H, Lu B, Wang Y, Yin M, Kong D, Ren J, Tian X and Chang H 2015 Chin. Opt. Lett. 13 100201
[26]Ovsiannikov V D, Pal'chikov V G, Taichenachev A V, Yudin V I, Katori H and Takamoto M 2007 Phys. Rev. A 75 020501
[27]Boyd M M, Ludlow A D, Blatt S, Foreman S M, Ido T, Zelevinsky T and Ye J 2007 Phys. Rev. Lett. 98 083002
[28]Brusch A, Targat R L, Baillard X, Fouché M and Lemonde P 2006 Phys. Rev. Lett. 96 103003
[29]Lemonde P 2009 Eur. Phys. J. Spec. Top. 172 81
[30]Kopfermann H 1963 Nuclear Moments (New York: Academic Press)
[31]Olschewski L 1972 Z. Phys. 249 205
[32]Santra R, Christ K V and Greene C H 2004 Phys. Rev. A 69 042510
[33]Takamoto M, Hong F L, Higashi R, Fujii Y, Imae M and Katori H 2006 J. Phys. Soc. Jpn. 75 104302
[34]Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
Related articles from Frontiers Journals
[1] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 043203
[2] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 043203
[3] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 043203
[4] Kai Chen, Zheng Hu, Qing-Hui Wang, Xiao-Hua Yang. Zeeman Effect of the Rovibronic Ground State of I$^{35}$Cl at Hyperfine Level[J]. Chin. Phys. Lett., 2017, 34(10): 043203
[5] Qiang Wang, Yi-Ge Lin, Fei Meng, Ye Li, Bai-Ke Lin, Er-Jun Zang, Tian-Chu Li, Zhan-Jun Fang. Magic Wavelength Measurement of the $^{87}$Sr Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2016, 33(10): 043203
[6] WANG Qiang, LIN Yi-Ge, GAO Fang-Lin, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock[J]. Chin. Phys. Lett., 2015, 32(10): 043203
[7] YU Geng-Hua, XU Qi-Ming, ZHOU Chao, DUAN Cheng-Bo, LI Long, CHAI Rui-Peng. Magic Wavelengths of the Optical Clock Transition at 1107 nm of Barium[J]. Chin. Phys. Lett., 2015, 32(03): 043203
[8] YANG Hai-Feng, GAO Wei, CHENG Hong, LIU Hong-Ping. Electron Dynamics of Atoms in Parallel Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2014, 31(10): 043203
[9] ZHANG Yue-Xia, LIU Qiang, SHI Ting-Yun. The Hydrogen Molecular Ion in Strong Fields Using the B-Spline Method[J]. Chin. Phys. Lett., 2013, 30(4): 043203
[10] ZHAO Yun-Hui, PAN Yi-Qing, LI Wen-Juan, DENG Xia, HAI Wen-Hua. Variational-Integral Perturbation Corrections for Hydrogen Atoms in Magnetic Fields[J]. Chin. Phys. Lett., 2013, 30(1): 043203
[11] WANG Yuan-Sheng, XIA Chang-Long, GUO Jing**, LIU Xue-Shen** . Relative Phase Dependence of Double Ionization in a Synthesized Laser Pulse[J]. Chin. Phys. Lett., 2011, 28(8): 043203
[12] YU Geng-Hua, , ZHONG Jia-Qi, , LI Run-Bing, WANG Jin, ZHAN Ming-Sheng, ** . Magic Wavelength of an Optical Clock Transition of Barium[J]. Chin. Phys. Lett., 2011, 28(7): 043203
[13] LI Guo-Hui, XU Xin-Ye** . Raman Sideband Cooling of Two-Valence-Electron Fermionic Atoms[J]. Chin. Phys. Lett., 2011, 28(6): 043203
[14] HAN Shun-Li, CHENG Bing, ZHANG Jing-Fang, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang. Polarization Gradient Cooling by Zeeman-Effect-Assisted Saturated Absorption[J]. Chin. Phys. Lett., 2009, 26(12): 043203
[15] WANG De-Hua, HUANG Kai-Yun. Coherent Control of Photodetachment of H- in Perpendicular Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2009, 26(9): 043203
Viewed
Full text


Abstract