Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 020502    DOI: 10.1088/0256-307X/35/2/020502
GENERAL |
Two-Point Resistance on the Centered-Triangular Lattice
M. Q. Owaidat1,2**, A. A. Al-Badawi1, J. H. Asad3, Mohammed Al-Twiessi1
1Department of Physics, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
2Department of Physics, Faculty of Sciences, Taibah University, Yanbu, Kingdom of Saudi Arabia
3Department of Physics, Faculty of Arts and Sciences, Palestine Technical University, Kadoorie, Tulkarm, Palestine
Cite this article:   
M. Q. Owaidat, A. A. Al-Badawi, J. H. Asad et al  2018 Chin. Phys. Lett. 35 020502
Download: PDF(433KB)   PDF(mobile)(428KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The resistance between any two lattice points in an infinite, centered-triangular lattice of equal resistors is determined using the lattice Green function method. It is shown that the two-point resistance on the centered-triangular lattice is expressed in terms of the resistance of a triangular lattice. Some exact values for the resistance near the origin of the lattice are presented. For large separation between lattice points the asymptotic forms of the resistance are calculated.
Received: 11 September 2017      Published: 23 January 2018
PACS:  05.50.+q (Lattice theory and statistics)  
  02.30.Vv (Operational calculus)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/020502       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/020502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Q. Owaidat
A. A. Al-Badawi
J. H. Asad
Mohammed Al-Twiessi
[1]Jeng M 2000 Am. J. Phys. 68 37
[2]Aitchison R E 1964 Am. J. Phys. 32 566
[3]Venezian G 1994 Am. J. Phys. 62 1000
[4]Atkinson D F and van Steenwijk F J 1999 Am. J. Phys. 67 486
[5]Wu F Y 2004 J. Phys. A Math. Gen. 37 6653
[6]Tan Z Z 2011 Resistor Network Model (Xi'an: Xidian University Press) (in Chinese)
[7]Cserti J 2000 Am. J. Phys. 68 896
[8]Cserti J, Szechenyi G and David G 2011 J. Phys. A 44 215201
[9]Owaidat M Q 2013 Am. J. Phys. 81 918
[10]Asad J H 2013 J. Stat. Phys. 150 1177
[11]Owaidat M Q 2014 Appl. Phys. Res. 6 100
[12]Owaidat M Q, Asad J H and Khalifeh J M 2014 Mod. Phys. Lett. B 28 1450252
[13]Owaidat M Q and Asad J H 2016 Eur. Phys. J. Plus 131 309
[14]Asad J H, Diab A A, Owaidat M Q, Hijjawi R S and Khalifeh J M 2014 Acta Phys. Pol. A 125 60
[15]Asad J H, Hijjawi R S, Sakaji A J and Khalifeh J M 2005 Int. J. Mod. Phys. B 19 3713
[16]Owaidat M Q, Hijjawi R S and Khalifeh J M 2014 Eur. Phys. J. Appl. Phys. 68 10102
[17]Asad J H, Diab A A, Owaidat M Q and Khalifeh J M 2014 Acta Phys. Pol. A 126 777
[18]Cserti J, Gyula D and Attila P 2002 Am. J. Phys. 70 153
[19]Owaidat M Q, Hijjawi R S and Khalifeh J M 2010 Mod. Phys. Lett. B 19 2057
[20]Owaidat M Q, Hijjawi R S and Khalifeh J M 2010 J. Phys. A 43 375204
[21]Owaidat M Q, Hijjawi R S and Khalifeh J M 2012 Int. J. Theor. Phys. 51 3152
[22]Owaidat M Q, Hijjawi R S and Khalifeh J M 2014 Eur. Phys. J. Plus 129 29
[23]Owaidat M Q, Asad J H and Tan Z Z 2016 Int. J. Mod. Phys. B Vol. 30 No. 24 1650166
[24]Li B, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501
[25]Zhang J Q et al 2014 Eur. Phys. J. B 87 122
[26]Zhang J Q et al 2014 Eur. Phys. J. B 87 285
[27]Zhang J Q et al 2016 AIP Adv. 6 075212
[28]Barton G 1989 Elements of Green's Functions and Propagation (Oxford: Oxford University Press)
[29]Duffy D G 2001 Green's Functions with Applications (New York: Chapman and Hall/CRC)
[30]Economou E 1983 Green's Functions in Quantum Physics (Berlin: Springer-Verlag)
[31]Barber M N and Ninham B W 1970 Random and Restricted Walks; Theory and Applications (New York: Gordon and Breach)
[32]Hughes B D 1995 Random Walks and Random Environments: Random Walks (Oxford: Clarendon)
[33]Wolfram T and Callaway J 1963 Phys. Rev. 130 2207
[34]Syozi I 1972 Transformation of Ising Models (London: Academic Press) vol 1
[35]Kotecky R, Salas J and Sokal A D 2 2008 Phys. Rev. Lett. 101 030601
[36]Chen Q N, Qin, M P, Chen J, Wei Z C, Zhao H H, Normand B and Xiang T 2011 Phys. Rev. Lett. 107 165701
[37]Deng Y J, Huang Y, Jacobsen J L, Salas J and Sokal A D 2011 Phys. Rev. Lett. 107 150601
[38]Azimi-Tafreshi N, Dashti-Naserabadi H, Moghimi-Araghi S and Ruelle P 2010 J. Stat. Mech. P02004
Related articles from Frontiers Journals
[1] Shaolong Zeng, Sue Ping Szeto, and Fan Zhong. Theory of Critical Phenomena with Memory[J]. Chin. Phys. Lett., 2022, 39(12): 020502
[2] Sheng Fang, Zongzheng Zhou, and Youjin Deng. Geometric Upper Critical Dimensions of the Ising Model[J]. Chin. Phys. Lett., 2022, 39(8): 020502
[3] Ze-Wang Zhang, Shuo Yang, Yi-Hang Wu, Chen-Xi Liu, Yi-Min Han, Ching-Hua Lee, Zheng Sun, Guang-Jie Li, Xiao Zhang. Predicting Quantum Many-Body Dynamics with Transferable Neural Networks[J]. Chin. Phys. Lett., 2020, 37(1): 020502
[4] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 020502
[5] JIA Li-Ping, Jasmina Tekić, DUAN Wen-Shan. Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice[J]. Chin. Phys. Lett., 2015, 32(4): 020502
[6] CHEN Yan, ZHANG Ke-Zhi, WANG Xiao-Liang, CHEN Yong. Ground-State Properties of Superfluid Fermi Gas in Fourier-Synthesized Optical Lattices[J]. Chin. Phys. Lett., 2014, 31(03): 020502
[7] B. G. Divyamani, Sudha. Thermal Entanglement in a Two-Qubit Ising Chain Subjected to Dzyaloshinsky–Moriya Interaction[J]. Chin. Phys. Lett., 2013, 30(12): 020502
[8] QIN Ming-Pu, CHEN Jing, CHEN Qiao-Ni, XIE Zhi-Yuan, KONG Xin, ZHAO Hui-Hai, Bruce Normand, XIANG Tao . Partial Order in Potts Models on the Generalized Decorated Square Lattice[J]. Chin. Phys. Lett., 2013, 30(7): 020502
[9] MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan, MEI Yu-Xue. Generalized Zero-Temperature Glauber Dynamics in a Two-Dimensional Square Lattice[J]. Chin. Phys. Lett., 2012, 29(12): 020502
[10] WANG Bo, HUANG Hai-Lin, SUN Zhao-Yu, KOU Su-Peng. Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System[J]. Chin. Phys. Lett., 2012, 29(12): 020502
[11] LI Xiang, DONG Li-Yun. Modeling and Simulation of Pedestrian Counter Flow on a Crosswalk[J]. Chin. Phys. Lett., 2012, 29(9): 020502
[12] XU Yan, HUANG Hai-Jun, and YONG Gui. Modified Static Floor Field and Exit Choice for Pedestrian Evacuation[J]. Chin. Phys. Lett., 2012, 29(8): 020502
[13] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 020502
[14] LIU Ping, LOU Sen-Yue,. Lie Point Symmetries and Exact Solutions of the Coupled Volterra System[J]. Chin. Phys. Lett., 2010, 27(2): 020502
[15] SUN Rong-Sheng, HUA Da-Yin. Synchronization of Local Oscillations in a Spatial Rock-Scissors-Paper Game Model[J]. Chin. Phys. Lett., 2009, 26(8): 020502
Viewed
Full text


Abstract