Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 088101    DOI: 10.1088/0256-307X/34/8/088101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Poisoning of MoO$_{3}$ Precursor on Monolayer MoS$_{2}$ Nanosheets Growth by Tellurium-Assisted Chemical Vapor Deposition
Zhi-Gang Wang, Fei Pang**
Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872
Cite this article:   
Zhi-Gang Wang, Fei Pang 2017 Chin. Phys. Lett. 34 088101
Download: PDF(1255KB)   PDF(mobile)(1249KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We obtain molybdenum disulfide (MoS$_{2}$) nanosheets (NSs) with edge sizes of 18 μm by direct sulfuration of MoO$_{3}$ powder spread on the SiO$_{2}$/Si substrates. However, the undesirable MoO$_{3}$ nanoparticles (NPs) left on the surface of MoS$_{2}$ NSs poison the MoO$_{3 }$ precursor. Introducing Te vapors to react with MoS$_{2}$ to form low melting point intermediate MoS$_{x}$Te$_{2-x}$, the evaporations of MoO$_{3}$ precursor recover and MoO$_{3}$ NPs disappear. Thus Te vapor is effective to suppress poisoning of the MoO$_{3}$ precursor. Selecting the appropriate amount of Te vapor, we fabricate monolayer MoS$_{2}$ NSs up to 70 μm in edge length. This finding can be significant to understand the role of Te in the Te-assisted chemical vapor deposition growth process of layered chalcogenide materials.
Received: 17 May 2017      Published: 22 July 2017
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  68.55.A- (Nucleation and growth)  
Fund: Supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China under Grant No 14XNLQ07.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/088101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/088101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Gang Wang
Fei Pang
[1]Jung Y et al 2014 ACS Nano 8 9550
[2]Radisavljevic B et al 2011 Nat. Nanotechnol. 6 147
[3]Nguyen H et al 2016 Mater. Lett. 168 1
[4]Song J G et al 2013 ACS Nano 7 11333
[5]Najmaei S et al 2013 Nat. Mater. 12 754
[6]Van der Zande A M et al 2013 Nat. Mater. 12 554
[7]Han G H et al 2015 Nat. Commun. 6 6128
[8]Wu S et al 2013 ACS Nano 7 2768
[9]Huang C M et al 2014 Nat. Mater. 13 1096
[10]Chen W et al 2015 J. Am. Chem. Soc. 137 15632
[11]Chen L et al 2015 ACS Nano 9 8368
[12]Ling X et al 2014 Nano Lett. 14 464
[13]Hao S et al 2016 J. Chem. Phys. 145 084704
[14]Gong Y J et al 2015 ACS Nano 9 11658
[15]Feng Q L et al 2016 Adv. Mater. 28 5019
[16]Li H, Zhang Q, Yap C C R et al 2012 Adv. Funct. Mater. 22 1385
[17]Kang J, Tongay S, J Li et al 2013 J. Appl. Phys. 113 143703
[18]Lee C, Yan H, Brus L E et al 2010 ACS Nano 4 2695
[19]Amani M, Chin M L, Birdwell A G et al 2013 Appl. Phys. Lett. 102 193107
[20]Yoo Y, DeGregorio Z P, Su Y et al 2017 Adv. Mater. 29 1605461
[21]Thangaraja A, Shinde S M, Kalita G et al 2015 Mater. Lett. 156 156
[22]Sarma P V, Patil P D, Barman P K et al 2016 RSC Adv. 6 376
Related articles from Frontiers Journals
[1] Jianguo Zhao, Kai Chen, Maogao Gong, Wenxiao Hu, Bin Liu, Tao Tao, Yu Yan, Zili Xie, Yuanyuan Li, Jianhua Chang, Xiaoxuan Wang, Qiannan Cui, Chunxiang Xu, Rong Zhang, and Youdou Zheng. Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range[J]. Chin. Phys. Lett., 2022, 39(4): 088101
[2] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 088101
[3] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 088101
[4] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 088101
[5] Yi-Yi Gu, Yi-Fan Wang, Jing Xia, Xiang-Min Meng. Chemical Vapor Deposition of Two-Dimensional PbS Nanoplates for Photodetection[J]. Chin. Phys. Lett., 2020, 37(4): 088101
[6] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 088101
[7] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 088101
[8] Ying-Xi Niu, Xiao-Yan Tang, Ren-Xu Jia, Ling Sang, Ji-Chao Hu, Fei Yang, Jun-Min Wu, Yan Pan, Yu-Ming Zhang. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer[J]. Chin. Phys. Lett., 2018, 35(7): 088101
[9] Ze-Yang Ren, Jin-Feng Zhang, Jin-Cheng Zhang, Sheng-Rui Xu, Chun-Fu Zhang, Kai Su, Yao Li, Yue Hao. Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(7): 088101
[10] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 088101
[11] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 088101
[12] Yang Zhang, Qing Wang, Xiao-Bin Zhang, Na Peng, Zhen-Qi Liu, Bing-Zhen Chen, Shan-Shan Huang, Zhi-Yong Wang. Application of AlGaInP with Sb Incorporation in Lattice-Matched 5-Junction Tandem Solar Cells[J]. Chin. Phys. Lett., 2017, 34(2): 088101
[13] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 088101
[14] Guo-Cai Dong, D. V. Baarle, J. Frenken, Qi-Wen Tang. Graphene/Rh(111) Structure Studied Using In-Situ Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 088101
[15] Jia-Min Gong, Quan Wang, Jun-Da Yan, Feng-Qi Liu, Chun Feng, Xiao-Liang Wang, Zhan-Guo Wang. Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer: Material Growth and Device Fabrication[J]. Chin. Phys. Lett., 2016, 33(11): 088101
Viewed
Full text


Abstract