CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Poisoning of MoO$_{3}$ Precursor on Monolayer MoS$_{2}$ Nanosheets Growth by Tellurium-Assisted Chemical Vapor Deposition |
Zhi-Gang Wang, Fei Pang** |
Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872
|
|
Cite this article: |
Zhi-Gang Wang, Fei Pang 2017 Chin. Phys. Lett. 34 088101 |
|
|
Abstract We obtain molybdenum disulfide (MoS$_{2}$) nanosheets (NSs) with edge sizes of 18 μm by direct sulfuration of MoO$_{3}$ powder spread on the SiO$_{2}$/Si substrates. However, the undesirable MoO$_{3}$ nanoparticles (NPs) left on the surface of MoS$_{2}$ NSs poison the MoO$_{3 }$ precursor. Introducing Te vapors to react with MoS$_{2}$ to form low melting point intermediate MoS$_{x}$Te$_{2-x}$, the evaporations of MoO$_{3}$ precursor recover and MoO$_{3}$ NPs disappear. Thus Te vapor is effective to suppress poisoning of the MoO$_{3}$ precursor. Selecting the appropriate amount of Te vapor, we fabricate monolayer MoS$_{2}$ NSs up to 70 μm in edge length. This finding can be significant to understand the role of Te in the Te-assisted chemical vapor deposition growth process of layered chalcogenide materials.
|
|
Received: 17 May 2017
Published: 22 July 2017
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
68.55.A-
|
(Nucleation and growth)
|
|
|
Fund: Supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China under Grant No 14XNLQ07. |
|
|
[1] | Jung Y et al 2014 ACS Nano 8 9550 | [2] | Radisavljevic B et al 2011 Nat. Nanotechnol. 6 147 | [3] | Nguyen H et al 2016 Mater. Lett. 168 1 | [4] | Song J G et al 2013 ACS Nano 7 11333 | [5] | Najmaei S et al 2013 Nat. Mater. 12 754 | [6] | Van der Zande A M et al 2013 Nat. Mater. 12 554 | [7] | Han G H et al 2015 Nat. Commun. 6 6128 | [8] | Wu S et al 2013 ACS Nano 7 2768 | [9] | Huang C M et al 2014 Nat. Mater. 13 1096 | [10] | Chen W et al 2015 J. Am. Chem. Soc. 137 15632 | [11] | Chen L et al 2015 ACS Nano 9 8368 | [12] | Ling X et al 2014 Nano Lett. 14 464 | [13] | Hao S et al 2016 J. Chem. Phys. 145 084704 | [14] | Gong Y J et al 2015 ACS Nano 9 11658 | [15] | Feng Q L et al 2016 Adv. Mater. 28 5019 | [16] | Li H, Zhang Q, Yap C C R et al 2012 Adv. Funct. Mater. 22 1385 | [17] | Kang J, Tongay S, J Li et al 2013 J. Appl. Phys. 113 143703 | [18] | Lee C, Yan H, Brus L E et al 2010 ACS Nano 4 2695 | [19] | Amani M, Chin M L, Birdwell A G et al 2013 Appl. Phys. Lett. 102 193107 | [20] | Yoo Y, DeGregorio Z P, Su Y et al 2017 Adv. Mater. 29 1605461 | [21] | Thangaraja A, Shinde S M, Kalita G et al 2015 Mater. Lett. 156 156 | [22] | Sarma P V, Patil P D, Barman P K et al 2016 RSC Adv. 6 376 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|