Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 087801    DOI: 10.1088/0256-307X/34/8/087801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ionoluminescence Spectra of a ZnO Single Crystal Irradiated with 2.5MeV H$^{+}$ Ions
Li Zheng1, Guang-Fu Wang1,2**, Meng-Lin Qiu1, Ying-Jie Chu1, Mi Xu1, Peng Yin1
1College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
2Beijing Radiation Center, Beijing 100875
Cite this article:   
Li Zheng, Guang-Fu Wang, Meng-Lin Qiu et al  2017 Chin. Phys. Lett. 34 087801
Download: PDF(1615KB)   PDF(mobile)(1614KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The ionoluminescence (IL) spectra of a ZnO single crystal irradiated with 2.5 MeV H$^{+}$ ions reveal that its intensity decreases with increasing the ion fluence, which indicates that the concentration of luminescence centers decreases with irradiation. The Gaussian decomposition results of the ZnO IL spectrum with a fluence of 1.77$\times$10$^{11}$ ions/cm$^{2}$ show that the spectrum is a superposition of energy levels centered at 1.75 eV, 2.10 eV, 3.12 eV and 3.20 eV. The four peaks are associated with electronic transitions from CB to V$_{\rm Zn}$, CB to O$_{\rm i}$, Zn$_{\rm i}$ to VB and the decay of self-trapped excitons, respectively. The results of single-exponential fitting demonstrate that different luminescent centers have different radiation resistance, which may explain why the emission decreases more slowly in the NBE band than in the DBE band. The agglomeration of larger point clusters accounts for the decrease in the concentration of luminescence centers and the increase in the concentration of non-luminescence centers, which indicates that the defect clusters induced by ion implantation act as nonradiative recombination centers and suppress light emission. The results of the photoluminescence spectra of a virgin ZnO single crystal and a ZnO single crystal irradiated with a fluence of 3.4$\times$10$^{14}$ ions/cm$^{2}$ show that compared with the virgin ZnO, the emission intensity of irradiated ZnO decreases by nearly two orders of magnitude, which demonstrates that the irradiation effect reduces radiative recombination and enhances nonradiative recombination. The conclusions of photoluminescence are consistent with the IL results.
Received: 10 May 2017      Published: 22 July 2017
PACS:  78.60.Hk (Cathodoluminescence, ionoluminescence)  
  61.80.Jh (Ion radiation effects)  
  61.72.J- (Point defects and defect clusters)  
  61.72.uj (III-V and II-VI semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/087801       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/087801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li Zheng
Guang-Fu Wang
Meng-Lin Qiu
Ying-Jie Chu
Mi Xu
Peng Yin
[1]Townsend P D and Crespillo M L 2015 Phys. Procedia 66 345
[2]Bachiller-Perea D, Jiménez-Rey D, Muñoz-Martín A et al 2015 J. Non-Cryst. Solids 428 36
[3]Chu Y J, Wang G F, Qiu M L et al 2016 Chin. Phys. Lett. 33 106101
[4]Xu X Q, Tian K, Shi Y Y et al 2008 Chin. Phys. Lett. 25 3783
[5]Xie Y, Jie W Q et al 2012 Chin. Phys. Lett. 29 077803
[6]Chen Y N, Xu S J, Zheng C C, et al 2014 Appl. Phys. Lett. 105 41912
[7]Epie E N and Chu W K 2016 Appl. Surf. Sci. 371 28
[8]Willander M, Nur O, Sadaf J R et al 2010 Materials 3 2643
[9]Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
[10]Drozdowska V, Babichenko S and Lisin A 2002 Oceanolog. Acta 44 339
[11]Janotti A and van de Walle C G 2009 Rep. Prog. Phys. 72 126501
[12]Ahn C H, Kim Y Y, Kim D C et al 2009 J. Appl. Phys. 105 013502
[13]Wu X L, Siu G G, Fu C L et al 2001 Appl. Phys. Lett. 78 2285
[14]Knutsen K E, Galeckas A, Zubiaga A et al 2012 Phys. Rev. B 86 121203
[15]Chen Z Q, Sekiguchi T, Yuan X L et al 2004 J. Phys.: Condens. Matter 16 293
[16]Umeda N, Vasilets V N, Bandourko V V et al 2002 Nucl. Instrum. Methods Phys. Res. Sect. B 191 708
[17]Boens N, Qin W, Basarić N et al 2007 Anal. Chem. 79 2137
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 087801
[2] ZHANG Shi-Ying, XIU Xiang-Qian, LIN Zeng-Qin, HUA Xue-Mei, XIE Zi-Li, ZHANG Rong, ZHENG You-Dou . The Formation and Characterization of GaN Hexagonal Pyramids[J]. Chin. Phys. Lett., 2013, 30(5): 087801
[3] XIE Yong, JIE Wan-Qi, WANG Tao, WIEDENMANN Michael, NEUSCHL Benjamin, MADEL Manfred, WANG Ya-Bin, FENEBERG Martin, THONKE Klaus. Growth-induced Stacking Faults of ZnO Nanorods Probed by Spatial Resolved Cathodoluminescence[J]. Chin. Phys. Lett., 2012, 29(7): 087801
[4] HOU Qi-Feng**, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, YANG Cui-Bai, YIN Hai-Bo, LI Jin-Min, WANG Zhan-Guo . Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN[J]. Chin. Phys. Lett., 2011, 28(3): 087801
[5] HU Qiang, WEI Tong-Bo, DUAN Rui-Fei, YANG Jian-Kun, HUO Zi-Qiang, LU Tie-Cheng, ZENG Yi-Ping. Characterization of Thick GaN Films Directly Grown on Wet-Etching Patterned Sapphire by HVPE[J]. Chin. Phys. Lett., 2009, 26(9): 087801
[6] ZHAO Lu-Bing, WU Jie-Jun, XU Ke, BAO Kui, YANG Zhi-Jian, PAN Yao-Bo, HU Xiao-Dong, ZHANG Guo-Yi. Optical Defect in GaN-Based Laser Diodes Detected by Cathodoluminescence[J]. Chin. Phys. Lett., 2008, 25(12): 087801
[7] XU Xiao-Qiu, TIAN Ke, SHI Yuan-Yuan, ZHONG Sheng, ZHANG Wei-Ying, FU Zhu-Xi. Ultraviolet Luminescence Depending on Zn Interstitial in ZnO Polycrystalline Films[J]. Chin. Phys. Lett., 2008, 25(10): 087801
[8] WEI Tong-Bo, MA Ping, DUAN Rui-Fei, WANG Jun-Xi, LI Jin-Min, ZENG Yi-Ping. Columnar Structures and Stress Relaxation in Thick GaN Films Grown on Sapphire by HVPE[J]. Chin. Phys. Lett., 2007, 24(3): 087801
[9] DING Dong-Zhou, LU Sheng, QIN Lai-Shun, REN Guo-Hao. Influence of Self-Absorption and Impurities on Scintillation Properties of (Lu0.1Y0.9)AlO3:Ce Single Crystals[J]. Chin. Phys. Lett., 2006, 23(9): 087801
[10] ZHOU Sheng-Qiang, WU Ming-Fang, YAO Shu-De, WANG Li, JIANG Feng-Yi. Structural, Morphology and Optical Properties of Epitaxial ZnO Films Grown on Al2O3 by MOCVD[J]. Chin. Phys. Lett., 2006, 23(4): 087801
[11] QU Chong, XU Zheng, TENG Feng, QIAN Lei, YU Wen-Ge, QUAN Shan-Yu, XU Xu-Rong,. Origin and Characteristics of Blue Light Emission in Solid State Cathodoluminescence of MEH-PPV[J]. Chin. Phys. Lett., 2004, 21(3): 087801
[12] LI Ming-Kai, LI Cheng-Bin, LIU Chuan-Sheng, FAN Xiang-Jun, FU De-Jun, SHON Yun, KANG Tae-Won. Cathodoluminescence and Magnetic Properties of Mn+ Implanted AlN[J]. Chin. Phys. Lett., 2004, 21(2): 087801
[13] QU Chong, XU Zheng, TENG Feng, XU Xu-Rong,. Characteristics of Solid State Cathodoluminescence of PPV[J]. Chin. Phys. Lett., 2003, 20(7): 087801
[14] ZHANG Xi-Tian, LIU Yi-Chun, MA Jian-Gang, LU You-Ming, SHEN De-Zhen, XU Wub, ZHONG Guo-Zhu, FAN Xi-Wu. Blue Cathodoluminescence from Highly Er-Doped ZnO Thin Films Induced by the Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2003, 20(3): 087801
[15] GUO Chang-xin, FU Zhu-xi, SHI Chao-shu. Ultraviolet Super-Radiation Luminescence of Sputtering ZnO Film Under Cathode-Ray Excitation at Room Temperature[J]. Chin. Phys. Lett., 1999, 16(2): 087801
Viewed
Full text


Abstract