Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 084205    DOI: 10.1088/0256-307X/34/8/084205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Bistability in a Hybrid Optomechanical System under the Effect of a Nonlinear Medium
A. Asghari Nejad**, H. R. Askari, H. R. Baghshahi
Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan 77176, Iran
Cite this article:   
A. Asghari Nejad, H. R. Askari, H. R. Baghshahi 2017 Chin. Phys. Lett. 34 084205
Download: PDF(668KB)   PDF(mobile)(663KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate a hybrid optomechanical system consisting of two coupled cavities, one of them is composed of two-end fixed mirrors (called the traditional cavity), and the other has a one-end oscillating mirror (named as the optomechanical cavity). A Kerr medium is inside the traditional cavity to enhance the nonlinearity due to the fact that it can cause observing of bistable behavior in intracavity intensity for the optomechanical cavity. The Hamiltonian of the system is written in a rotating frame and its dynamics is described by quantum Langevin equations of motion. Our proposed system exhibits unconventional plots for the mean photon number of the optomechanical cavity which are not observed in previous works. The present results show a deep effect of the Kerr medium on optical bistability of intracavity intensity for the optomechanical cavity. Also, coupling strength of the cavities can effectively change the stability of the system.
Received: 09 May 2017      Published: 22 July 2017
PACS:  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/084205       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/084205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. Asghari Nejad
H. R. Askari
H. R. Baghshahi
[1]Asghari Nejad A, Askari H R and Baghshahi H R 2017 Laser Phys. 27 035202
[2]Chang Y, Shi T, Liu Y X, Sun C and Nori F 2011 Phys. Rev. A 83 063826
[3]Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[4]Weiss T and Nunnenkamp A 2013 Phys. Rev. A 88 023850
[5]Kumar T, Bhattacherjee A B et al 2012 Opt. Commun. 285 300
[6]Gu K H, Yan X B, Zhang Y, Fu C B, Liu Y M, Wang X and Wu J H 2015 Opt. Commun. 338 569
[7]Yan D, Wang Z H, Ren C N, Gao H, Li Y and Wu J H 2015 Phys. Rev. A 91 023813
[8]Xia X, Xu J and Yang Y 2014 Phys. Rev. A 90 043857
[9]Jiang C, Bian X, Cui Y and Chen G 2016 J. Opt. Soc. Am. B 33 2099
[10]Metzger C H and Karrai K 2004 Nature 432 1002
[11]Gigan S, Böhm H, Paternostro M, Blaser F, Langer G, Hertzberg J, Schwab K, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Nature 444 67
[12]Barzanjeh S, Naderi M and Soltanolkotabi M 2011 Phys. Rev. A 84 023803
[13]Dalafi A, Naderi M, Soltanolkotabi M and Barzanjeh S 2013 J. Phys. B 46 235502
[14]Zeng R P, Zhang S, Wu C W, Wu W and Chen P X 2015 J. Opt. Soc. Am. B 32 2314
[15]Agarwal G and Huang S 2012 Phys. Rev. A 85 021801
[16]Liao J Q and Nori F 2013 Phys. Rev. A 88 023853
[17]Rabl P 2011 Phys. Rev. Lett. 107 063601
[18]Barzanjeh S, Naderi M and Soltanolkotabi M 2011 Phys. Rev. A 84 063850
[19]Shahidani S, Naderi M H, Soltanolkotabi M and Barzanjeh S 2014 J. Opt. Soc. Am. B 31 1087
[20]Agarwal G and Huang S 2010 Phys. Rev. A 81 041803
[21]Genes C, Ritsch H, Drewsen M and Dantan A 2011 Phys. Rev. A 84 051801
[22]Bradaschia C, Del Fabbro R, Di Virgilio A, Giazotto A, Kautzky H, Montelatici V, Passuello D, Brillet A, Cregut O and Hello P 1990 Nucl. Instr. Meth. Phys. Res. 289 518
[23]Tsang M 2011 Phys. Rev. A 84 043845
[24]Brown K, Britton J, Epstein R, Chiaverini J, Leibfried D and Wineland D 2007 Phys. Rev. Lett. 99 137205
[25]Sarma B and Sarma A K 2016 J. Opt. Soc. Am. B 33 1335
[26]Sete E A and Eleuch H 2015 J. Opt. Soc. Am. B 32 971
[27]Asghari Nejad A, Askari H R and Baghshahi H R 2017 Appl. Opt. 56 2816
[28]Wang C, Chen H J and Zhu K D 2015 Appl. Opt. 54 4623
[29]Farman F and Bahrampour A 2013 J. Opt. Soc. Am. B 30 1898
[30]Kumar T and Bhattacherjee A B 2010 Phys. Rev. A 81 013835
[31]Gardiner C and Zoller P 1991 Quantum Noise (Berlin: Springer)
[32]Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812
Related articles from Frontiers Journals
[1] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 084205
[2] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 084205
[3] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 084205
[4] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 084205
[5] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 084205
[6] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 084205
[7] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 084205
[8] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 084205
[9] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 084205
[10] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 084205
[11] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 084205
[12] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 084205
[13] Ya-Jing Jiang, Hao Lü, Hui Jing. Superradiance-Driven Phonon Laser[J]. Chin. Phys. Lett., 2018, 35(4): 084205
[14] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 084205
[15] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 084205
Viewed
Full text


Abstract