FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Terahertz Three-Dimensional Imaging Based on Computed Tomography with Photonics-Based Noise Source |
Tao Zhou, Rong Zhang, Chen Yao, Zhang-Long Fu, Di-Xiang Shao, Jun-Cheng Cao** |
Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
|
|
Cite this article: |
Tao Zhou, Rong Zhang, Chen Yao et al 2017 Chin. Phys. Lett. 34 084206 |
|
|
Abstract Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140 GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
|
|
Received: 31 May 2017
Published: 22 July 2017
|
|
PACS: |
42.79.Pw
|
(Imaging detectors and sensors)
|
|
42.30.Wb
|
(Image reconstruction; tomography)
|
|
|
|
|
[1] | Cormack A M 1964 J. Appl. Phys. 35 2908 | [2] | Ferguson B S, Wang S, Gray D, Abbott D and Zhang X C 2002 Opt. Lett. 27 1312 | [3] | Chan W L, Deibel J and Mittleman D M 2007 Rep. Prog. Phys. 70 1325 | [4] | Woodward R M, Wallace V P, Pye R J, Cole B E, Arnone D D, Linfield E H and Pepper M 2003 J. Invest. Dermatol. 120 72 | [5] | Kawase K, Ogawa Y, Watanabe Y and Inoue H 2003 Opt. Express 11 2549 | [6] | Bessou M, Chassagne B, Caumes J P, Pradere C, Maire P, Tondusson M and Abraham E 2012 Appl. Opt. 51 6738 | [7] | Chen H, Ma S H, Yan W X, Wu X M and Wang Z 2013 Chin. Phys. Lett. 30 030702 | [8] | Han P Y and Zhang X C 2001 Meas. Sci. Technol. 12 1747 | [9] | Zhang M, Pan R, Xiong W, Xiong W, He T and Shen J L 2012 Chin. Phys. Lett. 29 104208 | [10] | Sun W F, Wang X K and Zhang Y 2009 Chin. Phys. Lett. 26 114210 | [11] | Nguyen K L, Johns M L, Gladden L F, Worrall C H, Alexander P, Beere H E, Pepper M, Ritchie D A, Alton J, Barbieri S and Linfield E H 2006 Opt. Express 14 2123 | [12] | Lee A W M, Williams B S, Kumar S, Hu Q and Reno J L 2006 IEEE Photon. Technol. Lett. 18 1415 | [13] | Lee A W M, Kumar S, Williams B S and Hu Q 2006 Appl. Phys. Lett. 89 141125 | [14] | Li Y Y, Liu J Q, Liu F Q, Zhang J C, Zhai S Q, Zhou N, Wang L J, Liu S M and Wang Z G 2016 Chin. Phys. B 25 084206 | [15] | Ito H, Kodama S, Muramoto Y, Furuta T, Nagatsuma T and Ishibashi T 2004 IEEE J. Sel. Top. Quantum Electron. 10 709 | [16] | Ito H, Furuta T, Nakajima F, Yoshino K and Ishibashi T 2005 J. Lightwave Technol. 23 4016 | [17] | Zhang Y X, Pan J Q, Zhao L J, Zhu H L and Wang W 2010 Chin. Phys. Lett. 27 028501 | [18] | Toshiyuki I, Takayuki I and Tadao N 2013 IEICE Trans. Electron. E96-C 1210 | [19] | Webb R H 1996 Rep. Prog. Phys. 59 427 | [20] | Kak A C and Slaney M 1988 Principles Of Computerized Tomographic Imaging (New York: IEEE Press) chap 3 p 50 | [21] | Zhou T, Zhang R, Guo X G, Tan Z Y, Chen Z, Chao J C and Liu H C 2012 IEEE Photon. Technol. Lett. 24 1109 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|