Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 078503    DOI: 10.1088/0256-307X/34/7/078503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector
Ming Wei, Chun-Xiang Xu**, Fei-Fei Qin, Arumugam Gowri Manohari, Jun-Feng Lu, Qiu-Xiang Zhu
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096
Cite this article:   
Ming Wei, Chun-Xiang Xu, Fei-Fei Qin et al  2017 Chin. Phys. Lett. 34 078503
Download: PDF(994KB)   PDF(mobile)(992KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the Al nanoparticles (NPs) on a single ZnO microrod. The micro-PL and $I$–$V$ responses are measured before and after the decoration of Al NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of Al NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, Al NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors.
Received: 27 March 2017      Published: 23 June 2017
PACS:  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61475035 and 61275054, the Science and Technology Support Program of Jiangsu Province under Grant No BE2016177, and the Collaborative Innovation Center of Suzhou Nano Science and Technology.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/078503       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/078503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming Wei
Chun-Xiang Xu
Fei-Fei Qin
Arumugam Gowri Manohari
Jun-Feng Lu
Qiu-Xiang Zhu
[1]Peng L, Hu L and Fang X 2013 Adv. Mater. 25 5321
[2]Hassan J J, Mahdi M A, Kasim S J, Ahmed N M, Abu Hassan H and Hassan Z 2012 Appl. Phys. Lett. 101 261108
[3]Wang X, Liao M Y, Zhong Y T, Zheng J Y, Tian W, Zhai T Y, Zhi C Y, Ma Y, Yao J N, Yoshio B and Golberg D 2012 Adv. Mater. 24 3421
[4]Cheng G, Wu X, Liu B, Li B, Zhang X and Du Z 2011 Appl. Phys. Lett. 99 203105
[5]Li J J, Gao Z Y, Xue X W, Li H M, Deng J, Cui B F and Zou D S 2016 Acta Phys. Sin. 65 118104 (in Chinese)
[6]Qi X M, Peng W B, Zhao X L and He Y N 2015 Acta Phys. Sin. 64 0198501 (in Chinese)
[7]Kind H, Yan H, Messer B, Law M and Yang P 2002 Adv. Mater. 14 158
[8]Tsai D S, Lin C A, Lien W C, Chang H C, Wang Y L and He J H 2011 ACS Nano 5 7748
[9]Xu Q, Cheng Q, Zhong J, Cai W, Zhang Z, Wu Z and Zhang F 2014 Nanotechnology 25 055501
[10]Dai J, Xu C X, Xu X, Guo J, Li J T, Zhu G Y and Lin Y 2013 ACS Appl. Mater. Interfaces 5 9344
[11]Seo H, Park C J, Cho Y J, Kim Y B and Choi D K 2010 Appl. Phys. Lett. 96 232101
[12]Law J B K and Thong J T L 2006 Appl. Phys. Lett. 88 133114
[13]Ahn S E, Lee J S, Kim H, Kim S, Kang B H, Kim K H and Kim G T 2004 Appl. Phys. Lett. 84 5022
[14]Liu W Z, Xu H Y, Wang C L, Zhang L X, Zhang C, Sun S Y and Liu Y C 2013 Nanoscale 5 8634
[15]Pei J, Jiang D, Zhao M, Duan Q, Liu R and Sun L 2016 Appl. Surf. Sci. 389 1056
[16]Fan H, Sun M, Ma P, Yin M, Lu L, Xue X and Zhu X 2016 Nanotechnology 27 365303
[17]West P R, Ishii S, Naik G V, Emani N K, Shalaev V M and Boltasseva A 2010 Laser Photon. Rev. 4 795
[18]Dai J, Xu C X and Sun X W 2011 Adv. Mater. 23 4115
[19]Aguilar C A, Haight R, Mavrokefalos A, Korgel B A and Chen S C 2009 ACS Nano 3 3057
[20]Lin D, Wu H, Zhang W, Li H and Pan W 2009 Appl. Phys. Lett. 94 172103
[21]Xu C, Dai J, Zhu G, Zhu G, Lin Y, Li J and Shi Z 2014 Laser Photon. Rev. 8 469
[22]Czekalla C, Sturm C, Schmidt-Grund R, Cao B, Lorenz M and Grundmann M 2008 Appl. Phys. Lett. 92 241102
[23]Lu J, Zhu Q, Zhu Z, Liu Y, Wei M, Shi Z and Xu C 2016 J. Mater. Chem. C 4 7718
[24]Lu J, Li J, Xu C, Li Y, Dai J, Wang Y and Wang S 2014 ACS Appl. Mater. Interfaces 6 18301
Related articles from Frontiers Journals
[1] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 078503
[2] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 078503
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 078503
[4] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 078503
[5] Jin-Lei Lu, Chen Yue, Xuan-Zhang Li, Wen-Xin Wang, Hai-Qiang Jia, Hong Chen, Lu Wang. Numerical and Experimental Study on the Device Geometry Dependence of Performance of Heterjunction Phototransistors[J]. Chin. Phys. Lett., 2019, 36(10): 078503
[6] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 078503
[7] Dai-Bing Zhou, Song Liang, Liang-Shun Han, Ling-Juan Zhao, Wei Wang. Widely Tunable Two-Section Directly Modulated DBR Lasers for TWDM-PON System[J]. Chin. Phys. Lett., 2017, 34(3): 078503
[8] Xue-Hui Tao, Yong Yang. Theoretical Modeling of Luminous Efficacy for High-Power White Light-Emitting Diodes[J]. Chin. Phys. Lett., 2017, 34(3): 078503
[9] Yin Tang, Qing Cai, Lian-Hong Yang, Ke-Xiu Dong, Dun-Jun Chen, Hai Lu, Rong Zhang, You-Dou Zheng. High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions[J]. Chin. Phys. Lett., 2017, 34(1): 078503
[10] WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan, ZHU Zi-Qiang. Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector[J]. Chin. Phys. Lett., 2015, 32(10): 078503
[11] WANG Hui-Tao, ZHOU Dai-Bing, ZHANG Rui-Kang, LU Dan, ZHAO Ling-Juan, ZHU Hong-Liang, WANG Wei, JI Chen. Optimization of 1.3-μm InGaAsP/InP Electro-Absorption Modulator[J]. Chin. Phys. Lett., 2015, 32(08): 078503
[12] WANG Yong-Fan, QU Feng-Dong, ZHOU Jing-Ran, GUO Wen-Bin, DONG Wei, LIU Cai-Xia, RUAN Sheng-Ping. High Responsivity Organic Ultraviolet Photodetector Based on NPB Donor and C60 Acceptor[J]. Chin. Phys. Lett., 2015, 32(08): 078503
[13] YANG Lian-Hong, ZHANG Bao-Hua, GUO Fu-Qiang. Characteristics of an Indium-Rich InGaN p–n Junction Grown on a Strain-Relaxed InGaN Buffer Layer[J]. Chin. Phys. Lett., 2013, 30(4): 078503
[14] LI Jian-Fei, HUANG Ze-Qiang, ZHANG Wen-Le, JIANG Hao. Large Active Area AlGaN Solar-Blind Schottky Avalanche Photodiodes with High Multiplication Gain[J]. Chin. Phys. Lett., 2013, 30(3): 078503
[15] LIU Hui, ZHAO Heng, HOU Jin, LIU Dan, GAO Yi-Hua. Enhanced Light Extraction in AlInGaN UV Light-Emitting Diodes by an Embedded AlN/AlGaN Distributed Bragg Reflector[J]. Chin. Phys. Lett., 2012, 29(10): 078503
Viewed
Full text


Abstract