Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 067202    DOI: 10.1088/0256-307X/34/6/067202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Mechanisms of Spin-Dependent Heat Generation in Spin Valves
Xiao-Xue Zhang, Yao-Hui Zhu**, Pei-Song He, Bao-He Li
Department of Physics, Beijing Technology and Business University, Beijing 100048
Cite this article:   
Xiao-Xue Zhang, Yao-Hui Zhu, Pei-Song He et al  2017 Chin. Phys. Lett. 34 067202
Download: PDF(521KB)   PDF(mobile)(520KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The extra heat generation in spin transport is usually interpreted in terms of the spin relaxation. Reformulating the heat generation rate, we find alternative current-force pairs without cross effects, which enable us to interpret the product of each pair as a distinct mechanism of heat generation. The results show that the spin-dependent part of the heat generation includes two terms. One is proportional to the square of the spin accumulation and arises from the spin relaxation. However, the other is proportional to the square of the spin-accumulation gradient and should be attributed to another mechanism, the spin diffusion. We illustrate the characteristics of the two mechanisms in a typical spin valve with a finite nonmagnetic spacer layer.
Received: 04 February 2017      Published: 23 May 2017
PACS:  72.25.-b (Spin polarized transport)  
  72.25.Rb (Spin relaxation and scattering)  
  75.40.Gb (Dynamic properties?)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11404013, 11605003, 61405003, 11174020 and 11474012, the Scientific Research Project of Beijing Educational Committee under Grant No KM201510011002, and the 2016 Graduate Research Program of Beijing Technology and Business University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/067202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/067202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Xue Zhang
Yao-Hui Zhu
Pei-Song He
Bao-He Li
[1]Bauer G E W et al 2012 Nat. Mater. 11 391
[2]Adachi H et al 2013 Rep. Prog. Phys. 76 036501
[3]Gravier L et al 2006 Phys. Rev. B 73 052410
[4]Bakker F L et al 2010 Phys. Rev. Lett. 105 136601
[5]Slachter A et al 2011 Phys. Rev. B 84 020412
[6]Erekhinsky M et al 2012 Appl. Phys. Lett. 100 212401
[7]Flipse J et al 2012 Nat. Nanotechnol. 7 166
[8]Dejene F K et al 2014 Phys. Rev. B 90 180402
[9]Vera-Marun I J et al 2016 Nat. Commun. 7 11525
[10]Tulapurkar A A and Suzuki Y 2011 Phys. Rev. B 83 012401
[11]Wegrowe J E and Drouhin H J 2011 Entropy 13 316
[12]Slachter A, Bakker F L and van Wees B J 2011 Phys. Rev. B 84 174408
[13]Taniguchi T and Saslow W M 2014 Phys. Rev. B 90 214407
[14]Juarez-Acosta I et al 2016 J. Appl. Phys. 119 073906
[15]Chi F and Sun L L 2016 Chin. Phys. Lett. 33 117201
[16]Valet T and Fert A 1993 Phys. Rev. B 48 7099
[17]Kondepudi D and Prigogine I 1998 Modern Thermodynamics: From Heat Engine to Dissipative Structures (New York: Wiley)
Related articles from Frontiers Journals
[1] Haiyang Pan, Xiaobo Wang, Qiaoming Wang, Xiaohua Wu, Chang Liu, Nian Lin, and Yue Zhao. Proximity Effect of Epitaxial Iron Phthalocyanine Molecules on High-Quality Graphene Devices[J]. Chin. Phys. Lett., 2021, 38(8): 067202
[2] Weihao Cao, Matisse Wei-Yuan Tu, Jiang Xiao, and Wang Yao. Giant Spin Transfer Torque in Atomically Thin Magnetic Bilayers[J]. Chin. Phys. Lett., 2020, 37(10): 067202
[3] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 067202
[4] He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao, Xuan Zang, Zhi-Kuo Tao. Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes[J]. Chin. Phys. Lett., 2020, 37(3): 067202
[5] Feng Chi, Lian-Liang Sun. Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2016, 33(11): 067202
[6] NIU Peng-Bin, SHI Yun-Long, SUN Zhu, NIE Yi-Hang, LUO Hong-Gang. Phonon-Assisted Spin Current in Single Molecular Magnet Junctions[J]. Chin. Phys. Lett., 2015, 32(11): 067202
[7] ZHANG Xiao-Wei, ZHAO Hua, SANG Tian, LIU Xiao-Chun, CAI Tuo. Spin-Dependent Electron Transport in an Armchair Graphene Nanoribbon Subject to Charge and Spin Biases [J]. Chin. Phys. Lett., 2013, 30(1): 067202
[8] A. John Peter, Chang Woo Lee. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure[J]. Chin. Phys. Lett., 2012, 29(11): 067202
[9] LI Bo-Xin, ZHENG Jun, CHI Feng. Spin-Selective Transport of Electron in a Quantum Dot under Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(10): 067202
[10] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 067202
[11] LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. Chin. Phys. Lett., 2010, 27(5): 067202
[12] Eerdunchaolu, XIN Wei, ZHAO Yu-Wei. Influence of Rashba SOI and Polaronic Effects on the Ground-State Energy of Electrons in Semiconductor Quantum Rings[J]. Chin. Phys. Lett., 2010, 27(1): 067202
[13] CHI Feng, YUAN Xi-Qiu. Triple Quantum Dot Molecule as a Spin-Splitter[J]. Chin. Phys. Lett., 2009, 26(9): 067202
[14] TANG Xiao-Li, ZHANG Huai-Wu, SU Hua, JING Yu-Lan. Large Magnetoresistance Based on Double Spin Filter Tunnel Barriers[J]. Chin. Phys. Lett., 2008, 25(10): 067202
[15] LI Yu-Xian. Spin Polarization and Andreev Conductance through a Diluted Magnetic Semiconductor Quantum Wire with Spin--Orbit Interaction[J]. Chin. Phys. Lett., 2008, 25(10): 067202
Viewed
Full text


Abstract