Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 067201    DOI: 10.1088/0256-307X/34/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates
Yu-Bing Wang, Wei-Hong Yin, Qin Han**, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Yu-Bing Wang, Wei-Hong Yin, Qin Han et al  2017 Chin. Phys. Lett. 34 067201
Download: PDF(757KB)   PDF(mobile)(754KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We conduct a study on the superlinear transport of multilayer graphene channels that partially or completely locate on silicon which is pre-etched by inductively coupled plasma (ICP). By fabricating a multilayer-graphene field-effect transistor on a Si/SiO$_{2}$ substrate, we obtain that the superlinearity results from the interaction between the multilayer graphene sheet and the ICP-etched silicon. In addition, the observed superlinear transport of the device is found to be consistent with the prediction of Schwinger's mechanism. In the high bias regime, the values of $\alpha$ increase dramatically from 1.02 to 1.40. The strength of the electric field corresponding to the on-start of electron–hole pair production is calculated to be $5\times10^{4}$ V/m. Our work provides an experimental observation of the nonlinear transport of the multilayer graphene.
Received: 17 February 2017      Published: 23 May 2017
PACS:  72.80.Vp (Electronic transport in graphene)  
  72.20.Ht (High-field and nonlinear effects)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFB0402404, the High-Tech Research and Development Program of China under Grant Nos 2013AA031401, 2015AA016902 and 2015AA016904, and the National Natural Science Foundation of China under Grant Nos 61674136, 61176053, 61274069 and 61435002.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/067201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/067201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Bing Wang
Wei-Hong Yin
Qin Han
Xiao-Hong Yang
Han Ye
Shuai Wang
Qian-Qian Lv
Dong-Dong Yin
[1]Novoselov K S et al 2004 Science 306 666
[2]Wang X and Gan X 2017 Chin. Phys. B 26 034203
[3]Morozov S V et al 2008 Phys. Rev. Lett. 100 016602
[4]Yin W et al 2015 Chin. Phys. B 24 068101
[5]Neto A H C et al 2009 Rev. Mod. Phys. 81 109
[6]Novoselov K S et al 2005 Nature 438 197
[7]Stander N et al 2009 Phys. Rev. Lett. 102 026807
[8]Adam S et al 2007 Proc. Natl. Acad. Sci. USA 104 18392
[9]Chen J H et al 2008 Nat. Phys. 4 377
[10]Hwang E H et al 2007 Phys. Rev. Lett. 98 186806
[11]Bolotin K I et al 2008 Solid State Commun. 146 351
[12]Vandecasteele N et al 2010 Phys. Rev. B 82 045416
[13]Dóra B and Moessner R 2010 Phys. Rev. B 81 165431
[14]Allor D et al 2008 Phys. Rev. D 78 096009
[15]Guo N, Hu W, Jiang T et al 2016 Nanoscale 8 16065
[16]Yang H, Heo J, Park S et al 2012 Science 336 1140
[17]Schwinger J 1951 Phys. Rev. 82 664
[18]Rosenstein B, Lewkowicz M, Kao H C et al 2010 Phys. Rev. B 81 041416
[19]Khalil H M W, Ozgur K and Hwayong N 2013 Chin. Phys. Lett. 30 037201
Related articles from Frontiers Journals
[1] Lijun Zhu, Lin Li, Xiaodong Fan, Zhongniu Xie, and Changgan Zeng. Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene[J]. Chin. Phys. Lett., 2022, 39(9): 067201
[2] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 067201
[3] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 067201
[4] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 067201
[5] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 067201
[6] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 067201
[7] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 067201
[8] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 067201
[9] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 067201
[10] Sedighe Salimian, Mohammad Esmaeil Azim Araghi. Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor[J]. Chin. Phys. Lett., 2016, 33(01): 067201
[11] HE Ze-Zhao, YANG Ke-Wu, YU Cui, LI Jia, LIU Qing-Bin, LU Wei-Li, FENG Zhi-Hong, CAI Shu-Jun. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2015, 32(11): 067201
[12] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 067201
[13] YI Ming-Dong, GUO Jia-Lin, HU Bo, XIA Xian-Hai, FAN Qu-Li, XIE Ling-Hai, HUANG Wei. Memory Behaviors Based on ITO/Graphene Oxide/Al Structure[J]. Chin. Phys. Lett., 2015, 32(07): 067201
[14] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 067201
[15] F. Sattari, E. Faizabadi. Wavevector Filtering through Monolayer and Bilayer Graphene Superlattices[J]. Chin. Phys. Lett., 2013, 30(9): 067201
Viewed
Full text


Abstract