Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 067101    DOI: 10.1088/0256-307X/34/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias
Li-Ling Zhou**, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen
Department of Physics, Jiujiang University, Jiujiang 332005
Cite this article:   
Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng et al  2017 Chin. Phys. Lett. 34 067101
Download: PDF(678KB)   PDF(mobile)(675KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the heat generation $Q$ in a quantum dot (QD), coupled to a normal metal and a superconductor, without electric bias voltage. It is found that $Q$ is quite sensitive to the lead temperatures $T_{\rm L,R}$ and the superconductor gap magnitude ${\it \Delta}$. At $T_{\rm L,R}\ll \omega_0$ ($\omega_0$ is the phonon frequency), the superconductor affects $Q$ only at ${\it \Delta} < \omega_0$, and the maximum magnitude of negative $Q$ appears at some ${\it \Delta}$ slightly smaller than $\omega_0$. At elevated lead temperature, contribution to $Q$ from the superconductor arises at ${\it \Delta}$, ranging from less than to much larger than $\omega_0$. However, the peak value of $Q$ is several times smaller than that in the case of $T_{\rm L,R}\ll \omega_0$. Interchanging lead temperatures $T_{\rm L}$ and $T_{\rm R}$ leads to quite different $Q$ behaviors, while this makes no difference for a normal-metal–quantum-dot–normal-metal system, and the QD can be cooled much more efficiently when the superconductor is colder.
Received: 17 February 2017      Published: 23 May 2017
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  73.63.Kv (Quantum dots)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11164011.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/067101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/067101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Ling Zhou
Xue-Yun Zhou
Rong Cheng
Cui-Ling Hou
Hong Shen
[1]Brüggemann J, Weiss S, Nalbach P and Thorwart M 2014 Phys. Rev. Lett. 113 076602
[2]Wang Q, Xie H Q, Jiao H J and Nie Y H 2013 Europhys. Lett. 101 47008
[3]Chen Q, Tang L M, Chen K Q and Zhao H K 2013 J. Appl. Phys. 114 084301
[4]Chen Q and Deng Y H 2011 Commun. Theor. Phys. 56 517
[5]Chi F, Zheng J, Liu Y S and Guo Y 2012 Appl. Phys. Lett. 100 233106
[6]Zhou L L, Li S S, Wei J N and Wang S Q 2011 Phys. Rev. B 83 195303
[7]Jonas F and Michael G 2010 Phys. Rev. B 81 075311
[8]Huang Z et al 2006 Nano Lett. 6 1240
Huang Z et al 2007 Nat. Nanotechnol. 2 698
[9]Chen Y C et al 2003 Nano Lett. 3 1691
Chen Y C et al 2005 Nano Lett. 5 621
[10]Sun Q F and Xie X C 2007 Phys. Rev. B 75 155306
Liu J et al 2009 Phys. Rev. B 79 161309
[11]LüJ T and Wang J S 2007 Phys. Rev. B 76 165418
[12]Segal D and Nitzan A 2002 J. Chem. Phys. 117 3915
[13]Montgomery M J, Todorov T N and Sutton A P 2002 J. Phys.: Condens. Matter 14 5377
[14]Pecchia A, Romano G and Carlo A D 2007 Phys. Rev. B 75 035401
[15]Galperin M, Zitzan A and Ratner M 2007 Phys. Rev. B 75 155312
[16]Horsfield A P, Bowler D R, Bowler A J, Fiser A J, Todorov T N and Montgomery M J 2004 J. Phys.: Condens. Matter 16 3609
[17]Horsfield A P, Bowler D R, Ness H, Sánchez C G, Todorov T N and Fiser A J 2006 Rep. Prog. Phys. 69 1195
[18]Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
[19]Muller C J, van Ruitenbeek J M and de Jongh J L 1992 Phys. Rev. Lett. 69 140
[20]van den Brom H E, Yanson A I and van Ruitenbeek J M 1998 Physica B 252 69
[21]Agraït N, Untiedt C, Rubio-Bollinger G and Vieira S 2002 Phys. Rev. Lett. 88 216803
[22]Smit R H M, Untiedt C and van Ruitenbeek J M 2004 Nanotechnology 15 S472
[23]Mahan G D 2000 Many-Particle Physics 3rd edn (New York: Plenum Press)
[24]Haug H and Jauho A P 1998 Quantum Kinetics in Transport and Optics of Semiconductor (Berlin: Springer-verlag)
[25]Whan C B and Orlando T P 1996 Phys. Rev. B 54 R5255
[26]Chen Z Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 165324
Related articles from Frontiers Journals
[1] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 067101
[2] Qiong Wu, Huaxue Zhou, Yanling Wu, Lili Hu, Shunli Ni, Yichao Tian, Fei Sun, Fang Zhou, Xiaoli Dong, Zhongxian Zhao, and Jimin Zhao. Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se[J]. Chin. Phys. Lett., 2020, 37(9): 067101
[3] Yanling Wu, Xia Yin, Jiazila Hasaien, Yang Ding, Jimin Zhao. High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2020, 37(4): 067101
[4] Sheng Cao, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes[J]. Chin. Phys. Lett., 2019, 36(2): 067101
[5] Li-Yuan Rong, Xun Shi, Pierre Richard, Yun-Lei Sun, Guang-Han Cao, Xiang-Zhi Zhang, Jun-Zhang Ma, Ming Shi, Yao-Bo Huang, Tian Qian, Hong Ding, Ren-Zhong Tai. Coexistence of Polaronic States and Superconductivity in Iron-Pnictide Compound Ba$_{2}$Ti$_{2}$Fe$_{2}$As$_{4}$O[J]. Chin. Phys. Lett., 2018, 35(5): 067101
[6] ZHOU Li-Ling, LI Yong-Jun, HU Hua. Properties of Heat Generation in a Double Quantum Dot[J]. Chin. Phys. Lett., 2014, 31(06): 067101
[7] ZHU Li-Dan, SUN Fang-Yuan, ZHU Jie, TANG Da-Wei, LI Yu-Hua, GUO Chao-Hong. Nano-Metal Film Thermal Conductivity Measurement by using the Femtosecond Laser Pump and Probe Method[J]. Chin. Phys. Lett., 2012, 29(6): 067101
[8] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 067101
[9] LI Xiao-Xue, DONG Xian-Feng, GAO Kun, XIE Shi-Jie** . Reverse Polarization of a High-Energy Exciton in Conjugated Polymers[J]. Chin. Phys. Lett., 2011, 28(12): 067101
[10] LIU Wen, CHENG Jie, ZHANG Ming-Hua, LIU De-Sheng, ** . Zener Tunneling in One-Dimensional Organic Semiconductors at Finite Temperature[J]. Chin. Phys. Lett., 2011, 28(7): 067101
[11] JIANG Qing Yun, LI Sheng, Thomas F. George, SUN Xin . Bipolarons in Organic Electroluminescence[J]. Chin. Phys. Lett., 2010, 27(10): 067101
[12] ZHOU Li-Ling, LI Shu-Shen, ZENG Zhao-Yang. Maximal Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2009, 26(3): 067101
[13] LIU Wen, LI Yuan, QU Zhen, GAO Kun, YIN Sun, LIU De-Sheng,. Effect of Temperature on Polaron Stability in a One-Dimensional Organic Lattice[J]. Chin. Phys. Lett., 2009, 26(3): 067101
[14] DI Bing, MENG Yan, AN Zhong, LI You-Cheng. Dynamics of Polaron at Polymer/Polymer Interface[J]. Chin. Phys. Lett., 2008, 25(2): 067101
[15] CHEN Mei-Juan, YAN Yong-Hong, WU Chang-Qin. Spin-Flip of Polaron in Polymers with a Magnetic Impurity[J]. Chin. Phys. Lett., 2007, 24(6): 067101
Viewed
Full text


Abstract