CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias |
Li-Ling Zhou**, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen |
Department of Physics, Jiujiang University, Jiujiang 332005
|
|
Cite this article: |
Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng et al 2017 Chin. Phys. Lett. 34 067101 |
|
|
Abstract We investigate the heat generation $Q$ in a quantum dot (QD), coupled to a normal metal and a superconductor, without electric bias voltage. It is found that $Q$ is quite sensitive to the lead temperatures $T_{\rm L,R}$ and the superconductor gap magnitude ${\it \Delta}$. At $T_{\rm L,R}\ll \omega_0$ ($\omega_0$ is the phonon frequency), the superconductor affects $Q$ only at ${\it \Delta} < \omega_0$, and the maximum magnitude of negative $Q$ appears at some ${\it \Delta}$ slightly smaller than $\omega_0$. At elevated lead temperature, contribution to $Q$ from the superconductor arises at ${\it \Delta}$, ranging from less than to much larger than $\omega_0$. However, the peak value of $Q$ is several times smaller than that in the case of $T_{\rm L,R}\ll \omega_0$. Interchanging lead temperatures $T_{\rm L}$ and $T_{\rm R}$ leads to quite different $Q$ behaviors, while this makes no difference for a normal-metal–quantum-dot–normal-metal system, and the QD can be cooled much more efficiently when the superconductor is colder.
|
|
Received: 17 February 2017
Published: 23 May 2017
|
|
PACS: |
71.38.-k
|
(Polarons and electron-phonon interactions)
|
|
73.63.Kv
|
(Quantum dots)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11164011. |
|
|
[1] | Brüggemann J, Weiss S, Nalbach P and Thorwart M 2014 Phys. Rev. Lett. 113 076602 | [2] | Wang Q, Xie H Q, Jiao H J and Nie Y H 2013 Europhys. Lett. 101 47008 | [3] | Chen Q, Tang L M, Chen K Q and Zhao H K 2013 J. Appl. Phys. 114 084301 | [4] | Chen Q and Deng Y H 2011 Commun. Theor. Phys. 56 517 | [5] | Chi F, Zheng J, Liu Y S and Guo Y 2012 Appl. Phys. Lett. 100 233106 | [6] | Zhou L L, Li S S, Wei J N and Wang S Q 2011 Phys. Rev. B 83 195303 | [7] | Jonas F and Michael G 2010 Phys. Rev. B 81 075311 | [8] | Huang Z et al 2006 Nano Lett. 6 1240 | | Huang Z et al 2007 Nat. Nanotechnol. 2 698 | [9] | Chen Y C et al 2003 Nano Lett. 3 1691 | | Chen Y C et al 2005 Nano Lett. 5 621 | [10] | Sun Q F and Xie X C 2007 Phys. Rev. B 75 155306 | | Liu J et al 2009 Phys. Rev. B 79 161309 | [11] | LüJ T and Wang J S 2007 Phys. Rev. B 76 165418 | [12] | Segal D and Nitzan A 2002 J. Chem. Phys. 117 3915 | [13] | Montgomery M J, Todorov T N and Sutton A P 2002 J. Phys.: Condens. Matter 14 5377 | [14] | Pecchia A, Romano G and Carlo A D 2007 Phys. Rev. B 75 035401 | [15] | Galperin M, Zitzan A and Ratner M 2007 Phys. Rev. B 75 155312 | [16] | Horsfield A P, Bowler D R, Bowler A J, Fiser A J, Todorov T N and Montgomery M J 2004 J. Phys.: Condens. Matter 16 3609 | [17] | Horsfield A P, Bowler D R, Ness H, Sánchez C G, Todorov T N and Fiser A J 2006 Rep. Prog. Phys. 69 1195 | [18] | Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381 | [19] | Muller C J, van Ruitenbeek J M and de Jongh J L 1992 Phys. Rev. Lett. 69 140 | [20] | van den Brom H E, Yanson A I and van Ruitenbeek J M 1998 Physica B 252 69 | [21] | Agraït N, Untiedt C, Rubio-Bollinger G and Vieira S 2002 Phys. Rev. Lett. 88 216803 | [22] | Smit R H M, Untiedt C and van Ruitenbeek J M 2004 Nanotechnology 15 S472 | [23] | Mahan G D 2000 Many-Particle Physics 3rd edn (New York: Plenum Press) | [24] | Haug H and Jauho A P 1998 Quantum Kinetics in Transport and Optics of Semiconductor (Berlin: Springer-verlag) | [25] | Whan C B and Orlando T P 1996 Phys. Rev. B 54 R5255 | [26] | Chen Z Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 165324 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|