Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 064302    DOI: 10.1088/0256-307X/34/6/064302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation
Ming-Liang Li1, Ming-Xi Deng1**, Guang-Jian Gao1, Han Chen1, Yan-Xun Xiang2**
1Department of Physics, Logistics Engineering University, Chongqing 401331
2School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237
Cite this article:   
Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao et al  2017 Chin. Phys. Lett. 34 064302
Download: PDF(736KB)   PDF(mobile)(726KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influence of change in inner layer thickness of a composite circular tube is investigated on second-harmonic generation (SHG) by primary circumferential ultrasonic guided wave (CUGW) propagation. Within a second-order perturbation approximation, the nonlinear effect of primary CUGW propagation is treated as a second-order perturbation to its linear response. It is found that change in inner layer thickness of the composite circular tube will influence the efficiency of SHG by primary CUGW propagation in several aspects. In particular, with change in inner layer thickness, the phase velocity matching condition that is originally satisfied for the primary and double-frequency CUGW mode pair selected may no longer be satisfied. This will remarkably influence the efficiency of SHG by primary CUGW propagation. Theoretical analyses and numerical results show that the effect of SHG by primary CUGW propagation is very sensitive to change in inner layer thickness, and it can be used to accurately monitor a minor change in inner layer thickness of the composite circular tube.
Received: 28 December 2016      Published: 23 May 2017
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  43.20.Mv (Waveguides, wave propagation in tubes and ducts)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11474361, 11474093 and 11274388.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/064302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/064302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming-Liang Li
Ming-Xi Deng
Guang-Jian Gao
Han Chen
Yan-Xun Xiang
[1]Wang H F, Han J T and Zhang H 2013 Appl. Mech. Mater. 278 487
[2]Zeng D Z, Deng K H, Shi T H and Lin Y H 2014 J. Press. Vess. Tech. 136 061402
[3]Serikov O 2005 Metallurgist 49 347
[4]Torbatia A M, Mirandab R M, Quintino L, Williams S and Yapp D 2011 J. Mater. Process. Tech. 211 1112
[5]Chillara V K and Lissenden C J 2015 Opt. Eng. 55 011002
[6]Deng M X 1996 Jpn. J. Appl. Phys. 35 4004
[7]Deng M X 1999 J. Appl. Phys. 85 3051
[8]Deng M X 2003 J. Appl. Phys. 94 4152
[9]Srivastava A and Scalea F L 2009 J. Sound Vib. 323 932
[10]Zhao J L, Chillara V K, Ren B Y, Cho H J, Qiu J H and Lissenden C J 2016 J. Appl. Phys. 119 064902
[11]Deng M X, Xiang Y X and Liu L B 2011 J. Appl. Phys. 109 113525
[12]Deng M X and Pei J F 2007 Appl. Phys. Lett. 90 121902
[13]Xiang Y X, Deng M X, Xuan F Z and Liu C J 2011 Ultrasonics 51 974
[14]Rauter N and Lammering R 2015 Mech. Adv. Mater. Struc. 22 44
[15]Valle C, Qu J M and Jacobs L J 1999 Int. J. Eng. Sci. 37 1369
[16]Qu J M, Berthelot Y and Li Z B 1996 Rev. Prog. Quan. Nondest. Eval. 15 169
[17]Shivaraj K, Balasubramaniam K and Krishnamurthy C V 2008 J. Press. Vess. Tech. 130 021502
[18]Luo W, Rose J L and Van Velsor1 J K 2006 Rev. Prog. Quan. Nondest. Eval. 25 165
[19]Li J 2005 J. Press. Vess. Tech. 127 530
[20]Gao G J, Deng M X and Li M L 2015 Acta Phys. Sin. 64 184303 (in Chinese)
[21]Deng M X, Gao G J and Li M L 2015 Chin. Phys. Lett. 32 124305
[22]Deng M X, Gao G J, Xiang Y X and Li M L 2017 Ultrasonics 75 209
[23]Deng M X 2006 Ultrasonics 44 e1157
[24]Li M L, Deng M X and Gao G J 2016 Acta Phys. Sin. 65 194301 (in Chinese)
[25]Gao G J, Deng M X, Li M L and Liu C 2015 Acta Phys. Sin. 64 224301 (in Chinese)
[26]Wang Y J 2004 Acta Acust. 29 97 (in Chinese)
[27]Rose J L 1999 Ultrasonic Waves in Solid Media (UK: Cambridge University Press)
[28]de Lima W J N and Hamilton M F 2003 J. Sound Vib. 265 819
[29]Hearmon R F S and Landolt- Börnstein 1979 Numerical Data and Functional Relationship in Science and Technology Group III (Berlin: Springer)
[30]Pruell C, Kim J Y, Qu J M and Jacobs L J 2009 Smart Mater. Struct. 18 035003
[31]Nagy P B 1998 Ultrasonics 36 375
[32]Herrmann J, Kim J Y, Jacobs L J, Qu J M, Littles J W and Savage M F 2006 J. Appl. Phys. 99 124913
Related articles from Frontiers Journals
[1] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 064302
[2] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 064302
[3] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 064302
[4] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 064302
[5] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 064302
[6] Di Wu, De-Yao Yin, Zhi-Yuan Xiao, Qing-Fan Shi. Design of an Acoustic Levitator for Three-Dimensional Manipulation of Numerous Particles[J]. Chin. Phys. Lett., 2019, 36(9): 064302
[7] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 064302
[8] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 064302
[9] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 064302
[10] Ke-xue Sun, Shu-yi Zhang, Kiyotaka Wasa. High Ferroelectricities and High Curie Temperature of BiInO$_{3}$PbTiO$_{3}$ Thin Films Deposited by RF Magnetron Sputtering Method[J]. Chin. Phys. Lett., 2018, 35(12): 064302
[11] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 064302
[12] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 064302
[13] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 064302
[14] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 064302
[15] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 064302
Viewed
Full text


Abstract