Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 064701    DOI: 10.1088/0256-307X/34/6/064701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Valid Regions of Formulas of Sound Speed in Bubbly Liquids
Yu-Ning Zhang**, Zhong-Yu Guo, Yu-Hang Gao, Xiao-Ze Du
Key Laboratory of Condition Monitoring and Control for Power Plant Equipment (Ministry of Education), North China Electric Power University, Beijing 102206
Cite this article:   
Yu-Ning Zhang, Zhong-Yu Guo, Yu-Hang Gao et al  2017 Chin. Phys. Lett. 34 064701
Download: PDF(544KB)   PDF(mobile)(536KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract There are numerous formulae relating to the predictions of sound wave in the cavitating and bubbly flows. However, the valid regions of those formulae are rather unclear from the view point of physics. In this work, the validity of the existing formulae is discussed in terms of three regions by employing the analysis of three typical lengths involved (viscous length, thermal diffusion length and bubble radius). In our discussions, viscosity and thermal diffusion are both considered together with the effects of relative motion between bubbles and liquids. The importance of relative motion and thermal diffusion are quantitatively discussed in a wide range of parameter zones (including bubble radius and acoustic frequency). The results show that for large bubbles, the effects of relative motion will be prominent in a wide region.
Received: 16 January 2017      Published: 23 May 2017
PACS:  47.55.dd (Bubble dynamics)  
  43.35.Ei (Acoustic cavitation in liquids)  
  62.60.+v (Acoustical properties of liquids)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 51506051, the National Basic Research Program of China under Grant No 2015CB251503, and the Fundamental Research Funds for the Central Universities under Grant No JB2015RCY04.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/064701       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/064701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Ning Zhang
Zhong-Yu Guo
Yu-Hang Gao
Xiao-Ze Du
[1]Zhang Y N et al 2016 Renewable Sustainable Energy Rev. 56 303
[2]Zhang Y N et al 2017 P. I. Mech. Eng. C-J. Mec. 231 1181
[3]Zhang Y N et al 2017 ASME J. Fluids Eng. 139 074501
[4]Peng X X et al 2016 Int. J. Multiphas. Flow 79 10
[5]Zhang A M et al 2015 J. Fluid Mech. 776 137
[6]Zhang A M et al 2015 Phys. Fluids 27 062102
[7]Wang Y W et al 2011 Chin. Phys. Lett. 28 024601
[8]Lei X W and Zhao X Y 2009 Chin. Phys. Lett. 26 016401
[9]Shamsborhan H et al 2010 Exp. Fluids 49 1359
[10]Chen T et al 2016 Chin. Phys. Lett. 33 116401
[11]van Wijngaarden L 1972 Annu. Rev. Fluid Mech. 4 369
[12]Commander K W and Prosperetti A 1989 J. Acoust. Soc. Am. 85 732
[13]Wood A B 1941 A Text Book of Sound (London: G. Bell and Sons)
[14]Brennen C E 1995 Cavitation and Bubble Dynamics (Oxford: Oxford University Press)
[15]Ando K et al 2009 J. Acoust. Soc. Am. 126 EL69
[16]Prosperetti A 2015 Interface Focus 5 20150024
[17]Crespo A 1969 Phys. Fluids 12 2274
[18]Zhang Y N and Du X Z 2015 Ultrason. Sonochem. 26 119
[19]Zhang Y N et al 2017 Ultrason. Sonochem.
[20]Fuster D and Montel F 2015 J. Fluid Mech. 779 598
[21]Zhang A M and Liu Y L 2015 J. Comput. Phys. 294 208
[22]Liu L T et al 2017 Phys. Fluids 29 012105
[23]Zhang Y N et al 2015 Ultrason. Sonochem. 23 16
[24]Zhang Y N et al 2016 Ultrason. Sonochem. 29 129
[25]Zhang Y N et al 2017 Ultrason. Sonochem. 35 431
[26]Zhang Y N and Zhang Y N 2017 Ultrason. Sonochem.
[27]Zhang Y N 2013 Int. Commun. Heat Mass 43 1
Related articles from Frontiers Journals
[1] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 064701
[2] Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 064701
[3] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 064701
[4] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 064701
[5] Yu-Ning Zhang. Natural Frequency of Oscillating Gaseous Bubbles in Ventilated Cavitation[J]. Chin. Phys. Lett., 2017, 34(7): 064701
[6] LIANG Jin-Fu, CHEN Wei-Zhong, SHAO Wei-Hang, QI Shui-Bao. Aspherical Oscillation of Two Interacting Bubbles in an Ultrasound Field[J]. Chin. Phys. Lett., 2012, 29(7): 064701
[7] LIU Xiao-Bo, ZHANG Jian-Run, LI Pu, LE Van-Quynh. Energy Measurement of Bubble Bursting Based on Vibration Signals[J]. Chin. Phys. Lett., 2012, 29(6): 064701
[8] WANG Han, ZHANG Zhen-Yu, YANG Yong-Ming, ZHANG Hui-Sheng. Generation Mechanism of Liquid Column during the Burst of a Rising Bubble near a Free Surface[J]. Chin. Phys. Lett., 2010, 27(5): 064701
Viewed
Full text


Abstract