Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 060301    DOI: 10.1088/0256-307X/34/6/060301
GENERAL |
Stability of Dirac Equation in Four-Dimensional Gravity
F. Safari1, H. Jafari1,3**, J. Sadeghi2, S. J. Johnston3, D. Baleanu3,4,5
1Department of Mathematics, University of Mazandaran, Babolsar, Iran
2Physics Department, University of Mazandaran, Babolsar 4716-95447, Iran
3Department of Mathematical Sciences, University of South Africa, UNISA 0003, South Africa
4Department of Mathematics, Faculty of Art and Science, Çankaya University, Balgat 06530, Turkey
5Institute of Space Sciences, Magurele-Bucharest, Romania
Cite this article:   
F. Safari, H. Jafari, J. Sadeghi et al  2017 Chin. Phys. Lett. 34 060301
Download: PDF(411KB)   PDF(mobile)(411KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce the Dirac equation in four-dimensional gravity which is a generally covariant form. We choose the suitable variable and solve the corresponding equation. To solve such equation and to obtain the corresponding bispinor, we employ the factorization method which introduces the associated Laguerre polynomial. The associated Laguerre polynomials help us to write the Dirac equation of four-dimensional gravity in the form of the shape invariance equation. Thus we write the shape invariance condition with respect to the secondary quantum number. Finally, we obtain the spinor wave function and achieve the corresponding stability of condition for the four-dimensional gravity system.
Received: 09 January 2017      Published: 23 May 2017
PACS:  03.65.-w (Quantum mechanics)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
  11.30.Na (Nonlinear and dynamical symmetries (spectrum-generating symmetries))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/060301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/060301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
F. Safari
H. Jafari
J. Sadeghi
S. J. Johnston
D. Baleanu
[1]Schrödinger E 1940 Proc. R. Irish Acad. A 46 9
[2]Schrödinger E 1940 Proc. R. Irish Acad. A 46 183
[3]Schlesinger L 1895 Monatshefte Für Math. Und Phys. 9 A2
[4]Darboux G 1915 Leçonssur la Théorie Générale des Surfaces (Paris: Gauthier-Villars) p 213
[5]Infeld L 1941 Phys. Rev. 59 737
[6]Lin C C 1941 Phys. Rev. 59 841
[7]Eshghi M and Ikhdair S M 2015 Chin. Phys. B 24 30302
[8]Sari A R, Suparmi A and Cari A 2016 Chin. Phys. B 25 10301
[9]Hamazi M and Rajabi A A 2013 Chin. Phys. B 22 90301
[10]Wajima S, Kasai M and Futamase T 1997 Phys. Rev. D 55 1964
[11]Messai N and Boumali A 2014 Eur. Phys. J. Plus 11 1460
[12]Yesiltas Ö 2015 Adv. High Energy Phys. 2015 484151
[13]Keskin A I, Binbay F, Salti M and Acikgöz I 2013 Rom. J. Phys. 58 271
[14]Dirac P A M 1928 Proc. R. Soc. London Ser. A 118 351
[15]Shishkin G V and Villalba V M 1989 J. Math. Phys. 30 2132
[16]Fakhri H and Jafarizadeh M 2000 J. Math. Phys. 41 505
[17]Jafarizadeh M A and Fakhri H 1997 Phys. Lett. A 230 164
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 060301
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 060301
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 060301
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 060301
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 060301
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 060301
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 060301
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 060301
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 060301
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 060301
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 060301
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 060301
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 060301
[14] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 060301
[15] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 060301
Viewed
Full text


Abstract