Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 060302    DOI: 10.1088/0256-307X/34/6/060302
GENERAL |
Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator
X.-X. Yuan1†, L. He1†, S.-T. Wang1,2†, D.-L. Deng1,2,3, F. Wang1, W.-Q. Lian1, X. Wang1, C.-H. Zhang1, H.-L. Zhang1, X.-Y. Chang1, L.-M. Duan1,2*
1Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084
2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
3Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, MD 20742-4111, USA
Cite this article:   
X.-X. Yuan, L. He, S.-T. Wang et al  2017 Chin. Phys. Lett. 34 060302
Download: PDF(7970KB)   PDF(mobile)(8102KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hopf insulators are intriguing three-dimensional topological insulators characterized by an integer topological invariant. They originate from the mathematical theory of Hopf fibration and epitomize the deep connection between knot theory and topological phases of matter, which distinguishes them from other classes of topological insulators. Here, we implement a model Hamiltonian for Hopf insulators in a solid-state quantum simulator and report the first experimental observation of their topological properties, including nontrivial topological links associated with the Hopf fibration and the integer-valued topological invariant obtained from a direct tomographic measurement. Our observation of topological links and Hopf fibration in a quantum simulator opens the door to probe rich topological properties of Hopf insulators in experiments. The quantum simulation and probing methods are also applicable to the study of other intricate three-dimensional topological model Hamiltonians.
Received: 10 May 2017      Published: 23 May 2017
PACS:  03.67.-a (Quantum information)  
  73.43.Nq (Quantum phase transitions)  
  73.43.-f (Quantum Hall effects)  
Fund: This work was supported by the grants from the Ministry of Science and Technology of China and the Ministry of Education. L.M.D. and S.T.W. acknowledge in addition support from the ARL and the AFOSR MURI programs. D.L.D. is supported by JQI-NSF-PFC and LPS-MPO-CMTC.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/060302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/060302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
X.-X. Yuan
L. He
S.-T. Wang
D.-L. Deng
F. Wang
W.-Q. Lian
X. Wang
C.-H. Zhang
H.-L. Zhang
X.-Y. Chang
L.-M. Duan
[1]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2]Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3]Kitaev A 2009 AIP Conf. Proc. 1134 22
[4]Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[5]Chen X, Gu Z C, Liu Z X and Wen X G 2012 Science 338 1604
[6]König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[7]Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[8]Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[9]Moore J E, Ran Y and Wen X G 2008 Phys. Rev. Lett. 101 186805
[10]Deng D L, Wang S T, Shen C and Duan L M 2013 Phys. Rev. B 88 201105(R)
[11]Deng D L, Wang S T, Sun K and Duan L M 2016 arXiv:1612.01518
[12]Roushan P, Neill C, Chen Y, Kolodrubetz M, Quintana C, Leung N, Fang M, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Mutus J, O'Malley P J J, Sank D, Vainsencher A, Wenner J, White T, Polkovnikov A, Cleland A N and Martinis J M 2014 Nature 515 241
[13]Schroer M D, Kolodrubetz M H, Kindel W F, Sandberg M, Gao J, Vissers M R, Pappas D P, Polkovnikov A and Lehnert K W 2014 Phys. Rev. Lett. 113 050402
[14]Kong F, Ju C, Liu Y, Lei C, Wang M, Kong X, Wang P, Huang P, Li Z, Shi F, Jiang L and Du J 2016 Phys. Rev. Lett. 117 060503
[15]Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J and Borczyskowski C v 1997 Science 276 2012
[16]Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C 2013 Phys. Rep. 528 1
[17]Cai J, Retzker A, Jelezko F and Plenio M B 2013 Nat. Phys. 9 168
[18]Childress L and Hanson R 2013 MRS Bull. 38 134
[19]Childress L, Walsworth R and Lukin M 2014 Phys. Today 67 38
[20]Deng D L, Wang S T and Duan L M 2014 Phys. Rev. A 90 041601(R)
[21]Faddeev L and Niemi A J 1997 Nature 387 58
[22]Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[23]Cirac J I and Zoller P 2012 Nat. Phys. 8 264
[24]Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[25]Kim K, Chang M S, Korenblit S, Islam R, Edwards E E, Freericks J K, Lin G D, Duan L M and Monroe C 2010 Nature 465 590
[26]Deng D L, Wang S T and Duan L M 2014 Phys. Rev. B 89 075126
[27]Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
[28]Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I and Goldman N 2015 Nat. Phys. 11 162
[29]Mittal S, Ganeshan S, Fan J, Vaezi A and Hafezi M 2016 Nat. Photon. 10 180
[30]Goldman N, Budich J C and Zoller P 2016 Nat. Phys. 12 639
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 060302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 060302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 060302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 060302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 060302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 060302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 060302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 060302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 060302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 060302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 060302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 060302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 060302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 060302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 060302
Viewed
Full text


Abstract