Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 027101    DOI: 10.1088/0256-307X/34/2/027101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
D-Type Anti-Ferromagnetic Ground State in Ca$_{2}$Mn$_{2}$O$_{5}$
Pan Liu1, Wei-Hua Wang1, Wei-Chao Wang1,2, Ya-Hui Cheng1, Feng Lu1**, Hui Liu1**
1Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071
2Department of Material Science and Engineering, the University of Texas at Dallas, Richardson 75080, USA
Cite this article:   
Pan Liu, Wei-Hua Wang, Wei-Chao Wang et al  2017 Chin. Phys. Lett. 34 027101
Download: PDF(707KB)   PDF(mobile)(702KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the electronic and magnetic properties of an oxygen-deficient perovskite Ca$_{2}$Mn$_{2}$O$_{5}$ based on the first principle calculations. The calculations show that the ground state of Ca$_{2}$Mn$_{2}$O$_{5}$ is a D-type anti-ferromagnetic structure with the anti-ferromagnetic spin coupling along the $c$-direction. The corresponding electronic structure of the D-type state is investigated, and the results display that Ca$_{2}$Mn$_{2}$O$_{5}$ is an insulator with an indirect energy gap of $\sim$2.08 eV. By the partial density-of-state analysis, the valence band maximum is mainly contributed to by the O-2$p$ orbitals and the conduction band minimum is contributed to by the O-2$p$ and Mn-3$d$ orbitals. Due to the Coulomb repulsion interaction between electrons, the density of state of Mn-3$d$ is pulled to $-$6–$-$4.5 eV.
Received: 09 October 2016      Published: 25 January 2017
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  75.50.Ee (Antiferromagnetics)  
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB931703, the National Natural Science Foundation of China under Grant Nos 11404172, 51101088, and 51171082, and the Fundamental Research Funds for the Central Universities.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/027101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/027101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pan Liu
Wei-Hua Wang
Wei-Chao Wang
Ya-Hui Cheng
Feng Lu
Hui Liu
[1]Lee Y, Suntivich J, May K J, Perry E E and Yang S H 1969 J. Phys. Chem. Lett. 3 399
[2]Stephens I E L, Bondarenko A S, Grønbjerg U, Rossmeisl J and Chorkendorff I 2012 Energy Environ. Sci. 5 6744
[3]Hong W T, Risch M, Stoerzinger K A, Grimaud A, Suntivich J and Yang S H 2015 Energy Environ. Sci. 8 1404
[4]Kim J, Yin X, Tsao K C, Fang S H and Yang H 2014 J. Am. Chem. Soc. 136 14646
[5]Zhang K, Han X P, Hu Z, Zhang X L, Tao Z L and Chen J 2015 Chem. Soc. Rev. 44 699
[6]Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B and Yang S H 2011 Nat. Chem. 3 546
[7]Suntivich J, May K J, Gasteiger H A, Goodenough J B and Yang S H 2011 Science 334 1383
[8]Tzvetkov P, Kovacheva D, Nihtianova D and Bulgarian T R 2011 Bulg. Chem. Commun. 43 339
[9]Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[10]Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[11]Kresse G and Farthmüller J 1996 Phys. Rev. B 54 11169
[12]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[13]Lu Y, Lu F, Yang Z, Wu J, Yu H, Xie X, Xu J, Cheng F, Chen J, Xiong K, Liu H, Wang W, Zhao J and Wang W 2016 AIP Adv. 6 095210
[14]Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[15]Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[16]Loschen C, Carrasco J, Neyman K M and Illas F 2007 Phys. Rev. B 75 035115
[17]Lutfalla S, Shapovalov V and Bell A T 2011 J. Chem. Theory Comput. 7 2218
Related articles from Frontiers Journals
[1] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 027101
[2] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 027101
[3] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 027101
[4] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 027101
[5] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 027101
[6] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 027101
[7] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 027101
[8] Yi Jiang, Zhong Fang, and Chen Fang. A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator[J]. Chin. Phys. Lett., 2021, 38(7): 027101
[9] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 027101
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 027101
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 027101
[12] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 027101
[13] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 027101
[14] Chen Qiu, Ruyue Cao, Cai-Xin Zhang, Chen Zhang, Dan Guo, Tao Shen, Zhu-You Liu, Yu-Ying Hu, Fei Wang, and Hui-Xiong Deng. First-Principles Study of Intrinsic Point Defects of Monolayer GeS[J]. Chin. Phys. Lett., 2021, 38(2): 027101
[15] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 027101
Viewed
Full text


Abstract