Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 027102    DOI: 10.1088/0256-307X/34/2/027102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Molybdenum Carbide: A Stable Topological Semimetal with Line Nodes and Triply Degenerate Points
Jian-Peng Sun, Dong Zhang**, Kai Chang**
SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Jian-Peng Sun, Dong Zhang, Kai Chang 2017 Chin. Phys. Lett. 34 027102
Download: PDF(1489KB)   PDF(mobile)(1472KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose that the hexagonal crystal form of MoC is a stable and new type of topological semimetal. It hosts an exotic Fermi surface consisting of two concentric nodal rings in the presence of spin-orbit coupling, and possesses four pairs of triply degenerate points (TDPs) in the vicinity of the Fermi energy. The coexistence of the nodal ring Fermi surface and TDPs in MoC leads to extraordinary properties such as distinguishable drumhead surface states and manipulatable new fermions, which make MoC a fertile platform for in-depth understanding of topological phenomena and a potential candidate material for topological electronic devices.
Received: 13 January 2017      Published: 25 January 2017
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  81.05.Zx (New materials: theory, design, and fabrication)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11504366, and the National Basic Research Program of China under Grant Nos 2015CB921503 and 2016YFE0110000.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/027102       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/027102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Peng Sun
Dong Zhang
Kai Chang
[1]Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[2]Moore J E and Balents L 2007 Phys. Rev. B 75 121306
[3]Roy R 2009 Phys. Rev. B 79 195322
[4]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5]Qi X L and Zhang S C 2010 Phys. Today 63 33
[6]Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[7]Hořava P 2005 Phys. Rev. Lett. 95 016405
[8]Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[9]Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[10]Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[11]Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
[12]Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724
[13]Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613
[14]Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[15]Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[16]Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[17]Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126
[18]Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
[19]Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[20]Kim Y, Wieder B J, Kane C L and Rappe A M 2015 Phys. Rev. Lett. 115 036806
[21]Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B, Lee C C, Jeng H T, Zhang C, Yuan Z, Jia S, Bansil A, Chou F, Lin H and Hasan M Z 2016 Nat. Commun. 7 10556
[22]Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I, Alidoust N, Chen P J, Chang G, Bansil A, Jeng H T, Lin H and Hasan M Z 2016 Phys. Rev. B 93 121113
[23]Chan Y H, Chiu C K, Chou M Y and Schnyder A P 2016 Phys. Rev. B 93 205132
[24]Takane D, Wang Z, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T and Ando Y 2016 Phys. Rev. B 94 121108
[25]Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037
[26]Weng H, Fang C, Fang Z and Dai X 2016 Phys. Rev. B 93 241202
[27]Zhu Z, Winkler G W, Wu Q, Li J and Soluyanov A A 2016 Phys. Rev. X 6 031003
[28]Weng H, Fang C, Fang Z and Dai X 2016 Phys. Rev. B 94 165201
[29]Winkler G W, Wu Q, Troyer M, Krogstrup P and Soluyanov A A 2016 Phys. Rev. Lett. 117 076403
[30]Zaheer S, Young S M, Cellucci D, Teo J C Y, Kane C L, Mele E J and Rappe A M 2013 Phys. Rev. B 87 045202
[31]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33]Blöchl P E 1994 Phys. Rev. B 50 17953
[34]Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35]Kuo K and Hägg G 1952 Nature 170 245
[36]Clougherty E V, Lothrop K H and Kafalas J A 1961 Nature 191 1194
[37]Friedrich A, Morgenroth W, Bayarjargal L, Juarez-Arellano E A, Winkler B and Konôpková Z 2013 High Press. Res. 33 633
[38]Litinskii L 1989 Solid State Commun. 71 299
[39]Litinskii L 1 1990 Solid State Commun. 75 1009
[40]Örlygsson G and Harbrecht B 2001 J. Am. Chem. Soc. 123 4168
[41]Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[42]Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[43]Fang C, Chen Y, Kee H Y and Fu L 2015 Phys. Rev. B 92 081201
[44]Soluyanov A A and Vanderbilt D 2011 Phys. Rev. B 83 235401
[45]Yu R, Qi X L, Bernevig A, Fang Z and Dai X 2011 Phys. Rev. B 84 075119
[46]Ringel Z, Kraus Y E and Stern A 2012 Phys. Rev. B 86 045102
[47]Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[48]Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 027102
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 027102
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 027102
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 027102
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 027102
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 027102
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 027102
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 027102
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 027102
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 027102
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 027102
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 027102
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 027102
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 027102
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 027102
Viewed
Full text


Abstract