Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 107301    DOI: 10.1088/0256-307X/34/10/107301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons
Yu-Zhuo Lv1, Peng Zhao1**, De-Sheng Liu2,3
1School of Physics and Technology, University of Jinan, Jinan 250022
2School of Physics, Shandong University, Jinan 250100
3Department of Physics, Jining University, Qufu 273155
Cite this article:   
Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu 2017 Chin. Phys. Lett. 34 107301
Download: PDF(928KB)   PDF(mobile)(920KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using first-principles density functional theory combined with nonequilibrium Green's function method, we investigate the spin caloritronic transport properties of (2$\times$1) reconstructed zigzag MoS$_{2}$ nanoribbons. These systems can exhibit obvious spin Seebeck effect. Furthermore, by tuning the external magnetic field, a thermal giant magnetoresistance up to 10$^{4}$% can be achieved. These spin caloritronic transport properties are understood in terms of spin-resolved transmission spectra, band structures, and the symmetry analyses of energy bands around the Fermi level.
Received: 07 July 2017      Published: 27 September 2017
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Supported by the Natural Science Foundation of Shandong Province under Grant No ZR2016AM11.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/107301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/107301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Zhuo Lv
Peng Zhao
De-Sheng Liu
[1]Wolf S, Awschalom D, Buhrman R, Daughton J, von Molnar S, Roukes M, Chtchelkanova A and Treger D 2001 Science 294 1488
[2]Fert A 2008 Rev. Mod. Phys. 80 1517
[3]Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F and Chen G 2012 Energy Environ. Sci. 5 5147
[4]Poehler T O and Katz H E 2012 Energy Environ. Sci. 5 8110
[5]Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391
[6]Bauer G E W, MacDonald A H and Maekawa S 2010 Solid State Commun. 150 459
[7]Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[8]Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P and Myers R C 2010 Nat. Mater. 9 898
[9]Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894
[10]Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353
[11]Li Y, Zhou Z, Zhang S and Chen Z 2008 J. Am. Chem. Soc. 130 16739
[12]Botello-Méndez A R, López-Urías F, Terrones M and Terrones H 2009 Nanotechnology 20 325703
[13]Lauritsen J V, Kibsgaard J, Helveg S, Topøe H, Clausen B S, Lægsgaard E and Besenbacher F 2007 Nat. Nanotechnol. 2 53
[14]Hansen L P, Ramasse Q M, Kisielowski C, Brorson M, Johnson E, Topsøe H and Helveg S 2011 Angew. Chem. Int. Ed. 50 10153
[15]Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615
[16]Cui P, Choi J H, Chen W, Zeng J, Shih C K, Li Z and Zhang Z 2017 Nano Lett. 17 1097
[17]Chen Y, Cui P, Ren X, Zhang C, Jin C, Zhang Z and Shih C K 2017 Nat. Commun. 8 15135
[18]Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[19]Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 121104(R)
[20]Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407(R)
[21]Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[22]Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[23]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24]Troullier N and Martins J 1991 Phys. Rev. B 43 1993
[25]Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[26]Wu Q H, Zhao P, Su Y, Liu D S and Chen G 2015 RSC Adv. 5 20699
[27]Wu Q H, Zhao P and Liu D S 2016 Chin. Phys. Lett. 33 037303
[28]Li Z Y, Qian Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett. 100 206802
[29]Wang Z F, Li Q X, Shi Q W, Wang X P, Yang J L, Hou J G and Chen J 2008 Appl. Phys. Lett. 92 133114
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 107301
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 107301
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 107301
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 107301
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 107301
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 107301
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 107301
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 107301
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 107301
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 107301
[11] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 107301
[12] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 107301
[13] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 107301
[14] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 107301
[15] Rui-Fang Gao, Wen-Yong Su, Feng-Wang, Wan-Xiang Feng. Electron Transport Properties of Two-Dimensional Si$_{1}$P$_{1}$ Molecular Junctions[J]. Chin. Phys. Lett., 2017, 34(2): 107301
Viewed
Full text


Abstract