Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 104201    DOI: 10.1088/0256-307X/34/10/104201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Multi-Channel NRZ/RZ-DPSK to CSRZ-DPSK Format Conversion Based on Nonlinear Polarization Rotation of SOA
Ya-Ya Mao1**, Chong-Qing Wu2, Xin-Zhi Sheng2, Bo Liu1, Rahat Ullah1, Feng Tian1
1Institute of Optoelectronics, Nanjing University of Information Science & Technology, Nanjing 210044
2Key Lab of Luminescence and Optical Information Technology (Ministry of Education), School of Science, Beijing Jiaotong University, Beijing 100044
Cite this article:   
Ya-Ya Mao, Chong-Qing Wu, Xin-Zhi Sheng et al  2017 Chin. Phys. Lett. 34 104201
Download: PDF(982KB)   PDF(mobile)(975KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an all-optical nonreturn-to-zero/return-to-zero (NRZ/RZ) to carrier-suppressed return-to-zero (CSRZ) format conversion scheme for differential phase-shift keying (DPSK) signals. The conversion is based on nonlinear polarization rotation of a semiconductor optical amplifier (SOA). The 4-channel NRZ-DPSK or RZ-DPSK signals at 10 Gb/s are simultaneously converted to the corresponding CSRZ-DPSK signals, with $-$0.8 and 1.4 dB average power penalties, respectively. Additionally, high quality format conversion performances are shown with the optical spectra and eye diagrams.
Received: 22 May 2017      Published: 27 September 2017
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.25.Kb (Coherence)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61425022, 61522501, 61675004, 61307086, 61475024, 61672290, 61475094 and 61605013, the National Basic Research Program of China under Grant Nos 2015AA015501, 2015AA015502, 2015AA015504, 2015AA016904 and 2015AA016901, and the Beijing Nova Program under Grant No Z141101001814048.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/104201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/104201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Ya Mao
Chong-Qing Wu
Xin-Zhi Sheng
Bo Liu
Rahat Ullah
Feng Tian
[1]Willner A E, Khaleghi S, Chitgarha M R and Yilmaz O F 2014 J. Lightwave Technol. 32 660
[2]Hui Z Q, Zhang B and Zhang J G 2016 J. Mod. Opt. 63 724
[3]Fu S, Zhong W, Shum P and Wen Y 2009 Opt. Commun. 282 2143
[4]Yu Y, Zhang X and Huang D 2007 Opt. Express 15 5693
[5]Dong J, Zhang X, Xu J, Huang D and Fu S 2007 Opt. Express 15 2907
[6]Wang L, Dai Y and Lei H 2011 IEEE Photon. Technol. Lett. 23 368
[7]Zou B, Yu Y, Wu W and Zhang X 2012 IEEE Photon. Technol. Lett. 24 1091
[8]Pan Y, Yan L and Yi A 2016 Opt. Lett. 41 1620
[9]Tabares A, Victor P and Josep P 2017 Optical Fiber Communication Conference p Th1K.3
[10]Yu Y, Zou B, Wu W and Zhang X 2011 Opt. Express 19 14720
[11]Sharif G M, Nguyen-the Q and Matsuura M 2014 IEICE Trans. Electron. E97. C 755
[12]Chattopadhyay T 2010 Appl. Opt. 49 5226
[13]Lize Y K and Wu X 2008 Opt. Express 16 4228
[14]Yao S, Fu S and Wang H 2014 J. Opt. Commun. Networking 6 355
[15]Wang J and Sun J 2009 Opt. Express 17 12555
[16]Zhang Z and Yu Y 2011 Opt. Express 19 12427
[17]Wang J and Sun J 2008 IEEE Photon. Technol. Lett. 20 1039
[18]Yang X, Mishra A K and Manning R J 2007 Electron. Lett. 43 469
[19]Mao Y, Sheng X and Wu C 2015 Appl. Opt. 54 8130
[20]Jiang H, Wen H and Han L 2007 IEEE Photon. Technol. Lett. 19 1985
[21]Poole C D and Wagner R E 1986 Electron. Lett. 22 1029
[22]Fu S, Zhong W, Shum P, Wu C and Zhou J 2007 IEEE Photon. Technol. Lett. 19 1931
Related articles from Frontiers Journals
[1] Bo Peng, Shuo Yan, Dali Cheng, Danying Yu, Zhanwei Liu, Vladislav V. Yakovlev, Luqi Yuan, and Xianfeng Chen. Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension[J]. Chin. Phys. Lett., 2023, 40(3): 104201
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 104201
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 104201
[4] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 104201
[5] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 104201
[6] Chao-Yi Li, Jun-Ming An, Jiu-Qi Wang, Liang-Liang Wang, Jia-Shun Zhang, Jian-Guang Li, Yuan-Da Wu, Yue Wang, Xiao-Jie Yin, Yong Li, Fei Zhong. The 8$\times$10GHz Receiver Optical Subassembly Based on Silica Hybrid Integration Technology for Data Center Interconnection[J]. Chin. Phys. Lett., 2017, 34(10): 104201
[7] Qing-Chao Huang, Qi Wang, Cheng-Wu Yang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter[J]. Chin. Phys. Lett., 2017, 34(8): 104201
[8] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Yu-De Yu. Compact Optical Add-Drop De-Multiplexers with Cascaded Micro-Ring Resonators on SOI[J]. Chin. Phys. Lett., 2017, 34(6): 104201
[9] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 104201
[10] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Rui Wang, Yu-De Yu. A Highly Compact Third-Order Silicon Elliptical Micro-Ring Add-Drop Filter with a Large Free Spectral Range[J]. Chin. Phys. Lett., 2017, 34(3): 104201
[11] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 104201
[12] Ya-Ya Mao, Xin-Zhi Sheng, Chong-Qing Wu, Kuang-Lu Yu. Broad-Band All-Optical Wavelength Conversion of Differential Phase-Shift Keyed Signal Using an SOA-Based Nonlinear Polarization Switch[J]. Chin. Phys. Lett., 2016, 33(03): 104201
[13] Fei Guo, Dan Lu, Rui-Kang Zhang, Hui-Tao Wang, Wei Wang, Chen Ji. Two-Mode Converters at 1.3μm Based on Multimode Interference Couplers on InP Substrates[J]. Chin. Phys. Lett., 2016, 33(02): 104201
[14] MAO Ya-Ya, SHENG Xin-Zhi, WU Chong-Qing, ZHANG Tian-Yong, WANG Ying. Experimental Investigation of All-Optical NRZ-DPSK to RZ-DPSK Format Conversion Based on TOAD[J]. Chin. Phys. Lett., 2015, 32(11): 104201
[15] LIU Lan-Lan, WU Chong-Qing, SHANG Chao, WANG Jian, GAO Kai-Qiang. Quaternion Approach to Solve Coupled Nonlinear Schr?dinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems[J]. Chin. Phys. Lett., 2015, 32(08): 104201
Viewed
Full text


Abstract