Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 104202    DOI: 10.1088/0256-307X/34/10/104202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The 8$\times$10GHz Receiver Optical Subassembly Based on Silica Hybrid Integration Technology for Data Center Interconnection
Chao-Yi Li1,2, Jun-Ming An1,2**, Jiu-Qi Wang3, Liang-Liang Wang1, Jia-Shun Zhang1, Jian-Guang Li1, Yuan-Da Wu1,2, Yue Wang1, Xiao-Jie Yin1, Yong Li4, Fei Zhong4
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049
3College of Software, Beihang University, Beijing 100191
4Henan Shi Jia Photons Technology Co., Ltd, Hebi 458030
Cite this article:   
Chao-Yi Li, Jun-Ming An, Jiu-Qi Wang et al  2017 Chin. Phys. Lett. 34 104202
Download: PDF(1261KB)   PDF(mobile)(1264KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An $8\times10$ GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain flat-top spectra. The output waveguide facet is polished to 45$^{\circ}$ bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimental results show that the single channel 1 dB bandwidth of AWG ranges from 2.12 nm to 3.06 nm, the ROSA responsivity ranges from 0.097 A/W to 0.158 A/W, and the 3 dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.
Received: 25 July 2017      Published: 27 September 2017
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.82.Fv (Hybrid systems)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
Fund: Supported by the National High Technology Research and Development Program of China under Grant No 2015AA016902, the National Natural Science Foundation of China under Grant Nos 61435013 and 61405188, and the K. C. Wong Education Foundation.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/104202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/104202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao-Yi Li
Jun-Ming An
Jiu-Qi Wang
Liang-Liang Wang
Jia-Shun Zhang
Jian-Guang Li
Yuan-Da Wu
Yue Wang
Xiao-Jie Yin
Yong Li
Fei Zhong
[1]Zhang L, Lu D, Li Z et al 2016 J. Semicond. 37 124005
[2]IEEE P802.3bs 200Gb/s and 400Gb/s Ethernet Task Force. http://www.ieee802.org/3/bs/
[3]IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force. http://www.ieee802.org/3/ba/
[4]Motaghiannezam R, Pham T, Chen A et al 2016 Opt. Express 24 7374
[5]Arima R, Hatano T, Hiramoto K et al 2010 Optical Fiber Communications Conference and Exhibition (Ofc) (March 21–25 2010 San Diego, United States) p PDPD3
[6]Arima R, Yamashita T, Yahagi T et al 2011 Optical Fiber Communications Conference and Exhibition (Ofc) (March 6–10 2011 Los Angeles, United States) p JWA9
[7]Tolstikhin V, Wu F, Logvin Y et al 2013 Optical Fiber Communications Conference and Exhibition (Ofc) (March 17–31 2013 Anaheim, United States) p IW5A.4
[8]Ye H, Han Q, Lv Q Q et al 2017 Chin. Opt. Lett. 15 082301
[9]Kawamura M, Nakajima F, Oomori H et al 2017 Opt. Fiber Commun. Conf. Exhibition (Ofc) (March 19–23 2017 Los Angeles, United States) p Th3B.2
[10]Doi Y, Nakanishi Y, Yoshimatsu T et al 2015 Eur. Conf. Opt. Communication (September 27–October 1 2015 Valencia, Spain) p 0097
[11]Nakajima F, Kawamura M, Oki K et al 2013 Photon. Conf. (IPC) (September 8–12 2013 Bellevue, United States) p TuG3.1
[12]Mochizuki K, Itamoto H, Aruga H et al 15th Optoelectronics, Communications Conference (OECC2010) (July 5–9 2010 Sapporo Japan) p 7E3-2
[13]Xu H H, Hu Y T, Zhu Y et al 2010 7th IEEE International Conference on Group IV Photonics (September 1–3 2010 Beijing, China) p 126
[14]Ogawa I, Doi Y, Hashizume Y et al 2006 IEEE J. Sel. Top. Quantum Electron. 12 1045
[15]Xu Y Q, Liang C G, Yang Y J et al 2001 Chin. J. Semicond. 22 1546 (in Chinese)
[16]Yuan P, Wu Y D, Wang Y et al 2015 J. Semicond. 36 084005
[17]Pan P, An J M, Wang H J et al 2014 Chin. Phys. B 23 044210
[18]Amersfoort M R, Deboer C R, Vanham F P G M et al 1994 Electron. Lett. 30 300
[19]Li C Y, An J M, Zhang J S et al 2107 Acta Photonica Sin. 46 0823003 (in Chinese)
[20]Liu J F, Michel J, Giziewicz W et al 2005 Appl. Phys. Lett. 87 103501
[21]Bhoja S 2017 Opt. Fiber Commun. Conf. Exhibition (Ofc) (March 19–23 2017 Los Angeles, United States) p W4D.5
[22]Lv Q Q, Pan P, Ye H et al 2016 Chin. Phys. B 25 038505
Related articles from Frontiers Journals
[1] Bo Peng, Shuo Yan, Dali Cheng, Danying Yu, Zhanwei Liu, Vladislav V. Yakovlev, Luqi Yuan, and Xianfeng Chen. Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension[J]. Chin. Phys. Lett., 2023, 40(3): 104202
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 104202
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 104202
[4] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 104202
[5] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 104202
[6] Ya-Ya Mao, Chong-Qing Wu, Xin-Zhi Sheng, Bo Liu, Rahat Ullah, Feng Tian. Multi-Channel NRZ/RZ-DPSK to CSRZ-DPSK Format Conversion Based on Nonlinear Polarization Rotation of SOA[J]. Chin. Phys. Lett., 2017, 34(10): 104202
[7] Qing-Chao Huang, Qi Wang, Cheng-Wu Yang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter[J]. Chin. Phys. Lett., 2017, 34(8): 104202
[8] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Yu-De Yu. Compact Optical Add-Drop De-Multiplexers with Cascaded Micro-Ring Resonators on SOI[J]. Chin. Phys. Lett., 2017, 34(6): 104202
[9] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 104202
[10] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Rui Wang, Yu-De Yu. A Highly Compact Third-Order Silicon Elliptical Micro-Ring Add-Drop Filter with a Large Free Spectral Range[J]. Chin. Phys. Lett., 2017, 34(3): 104202
[11] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 104202
[12] Ya-Ya Mao, Xin-Zhi Sheng, Chong-Qing Wu, Kuang-Lu Yu. Broad-Band All-Optical Wavelength Conversion of Differential Phase-Shift Keyed Signal Using an SOA-Based Nonlinear Polarization Switch[J]. Chin. Phys. Lett., 2016, 33(03): 104202
[13] Fei Guo, Dan Lu, Rui-Kang Zhang, Hui-Tao Wang, Wei Wang, Chen Ji. Two-Mode Converters at 1.3μm Based on Multimode Interference Couplers on InP Substrates[J]. Chin. Phys. Lett., 2016, 33(02): 104202
[14] MAO Ya-Ya, SHENG Xin-Zhi, WU Chong-Qing, ZHANG Tian-Yong, WANG Ying. Experimental Investigation of All-Optical NRZ-DPSK to RZ-DPSK Format Conversion Based on TOAD[J]. Chin. Phys. Lett., 2015, 32(11): 104202
[15] LIU Lan-Lan, WU Chong-Qing, SHANG Chao, WANG Jian, GAO Kai-Qiang. Quaternion Approach to Solve Coupled Nonlinear Schr?dinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems[J]. Chin. Phys. Lett., 2015, 32(08): 104202
Viewed
Full text


Abstract